References

  1. M. Khodadadi, M. Samadi, A. Rahmani, Comparison between the efficiency of advanced oxidation process and coagulation for removal organophosphorus and carbamate pesticides, Iran. J. Health Environ., 4 (2011) 277–288.
  2. H. El Bakouri, J. Morillo, J. Usero, A. Ouassini, Potential use of organic waste substances as an ecological technique to reduce pesticide ground water contamination, J. Hydrol., 353 (2008) 335–342.
  3. M. Khodadadi, M. Samadi, A. Rahmani, R. Maleki, A. Allahresani, R. Shahidi, Determination of organophosphorous and carbamat pesticides residue in drinking water resources of Hamadan in 2007, Iran. J. Health Environ., 2 (2010) 250–257.
  4. M.C. Alavanja, J.A. Hoppin, F. Kamel, Health effects of chronic pesticide exposure: cancer and neurotoxicity 3, Annu. Rev. Public Health, 25 (2004) 155–197.
  5. L. Kazemizad, Y. Ghaffari, M. Kermani, M. Farzadkia, A. Hajizadeh, Investigation of photo–Fenton–like process efficiency in diazinon pesticide removal from aqueous solutions, J. Saf. Environ. Health Res., 1 (2016) 17–22.
  6. H. Shemer, K.G. Linden, Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment, J. Hazard. Mater., 136 (2006) 553–559.
  7. P. Li, E. Swanson, F. Gobas, Diazinon and its degradation products in agricultural water courses in British Columbia, Canada, Bull. Environ. Contam. Toxicol., 69 (2002) 59–65.
  8. M. Bavcon, P. Trebše, L. Zupančič-Kralj, Investigations of the determination and transformations of diazinon and malathion under environmental conditions using gas chromatography coupled with a flame ionisation detector, Chemosphere, 50 (2003) 595–601.
  9. A. Hassani, A. Khataee, S. Karaca, M.J.E.t. Shirzad-Siboni, Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: kinetic and isotherm studies, Environ. Technol., 36 (2015) 3125–3135.
  10. M. Shirzad-Siboni, A. Khataee, A. Hassani, S.J.C.R.C. Karaca, Preparation, characterization and application of a CTAB-modified nanoclay for the adsorption of an herbicide from aqueous solutions: kinetic and equilibrium studies, C. R. Chim., 18 (2015) 204–214.
  11. M.H. Fulton, P.B. Key, Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects, Environ. Toxicol. Chem., 20 (2001) 37–45.
  12. S. Alijani, M. Vaez, A. Zaringhalam Moghadam, Comparative study on the photodegradation of Acid Black 26 from synthetic wastewater using slurry and immobilized TiO2 on the sackcloth fiber, Iran. J. Health Environ., 6 (2013) 243–256.
  13. S. Hemmati Borji, S. Nasseri, R. Nabizadeh Nodehi, A. Mahvi, A. Javadi, Photocatalytic degradation of phenol in aqueous solutions by Fe (III)-doped TiO2/UV process, Iran. J. Health Environ., 3 (2011) 369–380.
  14. A.H. Mahvi, A. Maleki, Photosonochemical degradation of phenol in water, Desal. Wat. Treat., 20 (2010) 197–202.
  15. A. Maleki, B. Shahmoradi, Solar degradation of Direct Blue 71 using surface modified iron doped ZnO hybrid nanomaterials, Water Sci. Technol., 65 (2012) 1923–1928.
  16. A. Maleki, A. Mahvi, M. Alimohamadi, A. Ghasri, Advanced oxidation of phenol by ultraviolet irradiation in aqueous system, Pak. J. Biol. Sci., 9 (2006) 2338–2341.
  17. M.Z. NOORI, R. Darvishi, K.A.G. SHAMS, H. Ghodini, M. Foroughi, Study of the effective parameters on decolorization of methylene blue using UV radiation in the presence of immobilized catalyst, J. Ilam Univ. Med. Sci., 21 (2013) 36–46.
  18. B. Shahmoradi, A. Maleki, K. Byrappa, Removal of Disperse Orange 25 using in situ surface-modified iron-doped TiO2 nanoparticles, Desal. Wat. Treat., 53 (2015) 3615–3622.
  19. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, T. Guo, Y. Zhao, C. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater., 182 (2010) 123–129.
  20. B. Shahmoradi, A. Maleki, K. Byrappa, Photocatalytic degradation of Amaranth and Brilliant Blue FCF dyes using in situ modified tungsten doped TiO2 hybrid nanoparticles, Catal. Sci. Technol., 1 (2011) 1216–1223.
  21. A. Mohagheghian, K. Ayagh, K. Godini, M. Shirzad-Siboni, Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation, J. Adv. Oxid. Technol., 20 (2017) 20160153.
  22. S. Tabasideh, A. Maleki, B. Shahmoradi, E. Ghahremani, G. McKay, Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles, Sep. Purif. Technol., 189 (2017) 186–192.
  23. N.M. Phuong, N.C. Chu, D. Van Thuan, M.N. Ha, N.T. Hanh, H.D.T. Viet, M. Thu, N. Thi, P. Van Quan, T. Truc, Novel removal of diazinon pesticide by adsorption and photocatalytic degradation of visible light-driven Fe-TiO2/Bent-Fe photocatalyst, J. Chem., 2019 (2019) 2678927.
  24. A. Jonidi-Jafari, M. Shirzad-Siboni, J.-K. Yang, M. Naimi-Joubani, M. Farrokhi, Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite, J. Taiwan Inst. Chem. Eng., 50 (2015) 100–107.
  25. M.M. Baneshi, S. Rezaei, A. Sadat, A. Mousavizadeh, M. Barafrashtehpour, H. Hekmatmanesh, Investigation of photocatalytic degradation of diazinon using titanium dioxide (TiO2) nanoparticles doped with iron in the presence of ultraviolet rays from the aqueous solution, Biosci. Biotechnol. Res. Commun., 1 (2017) 60–67.
  26. Y.H. Siddique, W. Khan, S. Khanam, S. Jyoti, F. Naz, B.R. Singh, A.H. Naqvi, Toxic potential of synthesized graphene zinc oxide nanocomposite in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9, BioMed Res. Int., 2014 (2014) 1–10.
  27. L. MeiJiao, J. Li, X. Yang, C. Zhang, J. Yang, H. Hu, X. Wang, Applications of graphene-based materials in environmental protection and detection, Chinese Sci. Bull., 58 (2013) 2698–2710.
  28. B. Saravanakumar, R. Mohan, S.-J. Kim, Facile synthesis of graphene/ZnO nanocomposites by low temperature hydrothermal method, Mater. Res. Bull., 48 (2013) 878–883.
  29. Z. Zhang, J.B. Goodall, D.J. Morgan, S. Brown, R.J. Clark, J.C. Knowles, N.J. Mordan, J.R. Evans, A.F. Carley, M. Bowker, Photocatalytic activities of N-doped nano-titanias and titanium nitride, J. Eur. Ceram. Soc., 29 (2009) 2343–2353.
  30. T.N. Bahremandi, M. Fathi, A. Monshi, V. Mortazavi, F. Shirani, S.M. Mohammadi, Synthesis and evaluation of antibacterial activity of silver-doped titania nanoparticles as an antibacterial additive to dental materials, J. New Mater., 4 (2013) 21–33.
  31. M. Ahmad, E. Ahmed, W. Ahmed, A. Elhissi, Z. Hong, N. Khalid, Enhancing visible light responsive photocatalytic activity by decorating Mn-doped ZnO nanoparticles on graphene, Ceram. Int., 40 (2014) 10085–10097.
  32. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  33. S. Kashyap, S. Mishra, S.K. Behera, Aqueous colloidal stability of graphene oxide and chemically converted graphene, J. Nanopart., 2014 (2014) 1–6.
  34. H.S. Shin, D. Kang, Control of size and physical properties of graphene oxide by changing the oxidation temperature, Carbon Lett., 13 (2012) 39–43.
  35. A. Derbalah, A. Ismail, Remediation technologies of diazinon and malathion residues in aquatic system, Environ. Prot. Eng., 39 (2013) 135–147.
  36. F. He, D. Zhao, J. Liu, C.B. Roberts, Stabilization of Fe− Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater, Ind. Eng. Chem. Res., 46 (2007) 29–34.
  37. N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci., 21 (2009) 527–533.
  38. D. Mijin, M. Savić, P. Snežana, A. Smiljanić, O. Glavaški, M. Jovanović, S. Petrović, A study of the photocatalytic degradation of metamitron in ZnO water suspensions, Desalination, 249 (2009) 286–292.
  39. M. Dehghani, A. Fadaei, Photocatalytic oxidation of organophosphorus pesticides using zinc oxide, Res. J. Chem. Environ., 16 (2012) 104–109.
  40. R. Mohamed, I. Mkhalid, E. Baeissa, M. Al-Rayyani, Photocatalytic degradation of methylene blue by Fe/ZnO/SiO2 nanoparticles under visiblelight, J. Nanotechnol., 2012 (2012) 1–5.
  41. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8 (2004) 501–551.
  42. M. Muneer, M. Qamar, M. Saquib, D. Bahnemann, Heterogeneous photocatalysed reaction of three selected pesticide derivatives, propham, propachlor and tebuthiuron in aqueous suspensions of titanium dioxide, Chemosphere, 61 (2005) 457–468.
  43. Y. Nakaoka, H. Katsumata, S. Kaneco, T. Suzuki, K. Ohta, Photocatalytic degradation of diazinon in aqueous solution by platinized TiO2, Desal. Wat. Treat., 13 (2010) 427–436.
  44. N. Daneshvar, S. Aber, M.S. Dorraji, A. Khataee, M. Rasoulifard, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Sep. Purif. Technol., 58 (2007) 91–98.
  45. V. Sakkas, A. Dimou, K. Pitarakis, G. Mantis, T. Albanis, TiO2 photocatalyzed degradation of diazinon in an aqueous medium, Environ. Chem. Lett., 3 (2005) 57–61.
  46. A.A. Khodja, T. Sehili, J.-F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions, J. Photochem. Photobiol. A, 141 (2001) 231–239.
  47. H. Hossaini, G. Moussavi, M. Farrokhi, The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water, Water Res., 59 (2014) 130–144.
  48. Z.-p. Yang, X.-y. Gong, C.-j. Zhang, Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications, Chem. Eng. J., 165 (2010) 117–121.