References
- I. Oller, S. Malato, J.A. Sánchez-Pérez, Combination of advanced
oxidation processes and biological treatments for wastewater
decontamination–a review, Sci. Total Environ., 409 (2011)
4141–4166.
- O. Tokode, R. Prabhu, L.A. Lawton, P.K.J. Robertson, Controlled
periodic illumination in semiconductor photocatalysis,
J. Photochem. Photobiol., A., 319–320 (2016) 96–106.
- M.C. Chang, H.Y. Shu, T.H. Tseng, H.W. Hsu, Supported
zinc oxide photocatalyst for decolorization and
mineralization of orange G dye wastewater under UV365
irradiation, Int. J. Photoenergy, 2013 (2013) 1–12, https://doi.
org/10.1155/2013/595031.
- S. Krishnan, H. Rawindran, C.M. Sinnathambi, J.W. Lim,
Comparison of various advanced oxidation processes used in
remediation of industrial wastewater laden with recalcitrant
pollutants, Mater. Sci. Eng., 206 (2017) 1–11.
- H. Huang, D.Y.C. Leung, P.C.W. Kwong, J. Xiong, L. Zhang,
Enhanced photocatalytic degradation of methylene blue
under vacuum ultraviolet irradiation, Catal. Today, 201 (2013)
189–194.
- U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic
degradation of organic contaminants over titanium dioxide: a
review of fundamentals, progress and problems, J. Photochem.
Photobiol., C, 9 (2008) 1–12.
- O. Autin, J. Hart, P. Jarvis, J. MacAdam, S.A. Parsons, B. Jefferson,
Comparison of UV/H2O2 and UV/TiO2 for the degradation of
metaldehyde: kinetics and the impact of background organics,
Water Res., 46 (2012) 5655–5662.
- U.G. Akpan, B.H. Hameed, Parameters affecting the
photocatalytic degradation of dyes using TiO2-based
photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
- N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi,
Decolorization and aromatic ring degradation kinetic of direct
red 80 by UV oxidation in the presence of hydrogen peroxide
utilizing TiO2 as a photocatalyst, Chem. Eng. J., 112 (2005)
191–196.
- Q. Zhang, C. Li, T. Li, Rapid photocatalytic decolorization of
methylene blue using high photo flux UV/TiO2/H2O2 process,
Chem. Eng. J., 217 (2013) 407–413.
- S. Kang, L. Zhang, C. Liu, L. Huang, H. Shi, L. Cui, Hydrogen
peroxide activated commercial P25 TiO2 as efficient
visible-light-driven photocatalyst on dye degradation, Int.
J. Electrochem. Sci., 12 (2017) 5284–5293.
- Y. Zhiyong, H. Keppner, D. Laub, E. Mielczarski, J. Mielczarski,
L. Kiwi-Minsker, A. Renken, J. Kiwi, Photocatalytic discoloration
of Methyl Orange on innovative parylene –TiO2 flexible thin
films under simulated sunlight, Appl. Catal., B, 79 (2008) 63–71.
- T.A. Egerton, H. Purnama, Does hydrogen peroxide really
accelerate TiO2 UV-C photocatalyzed decolorization of azodyes
such as Reactive Orange 16?, Dyes Pigm., 101 (2014)
280–285.
- Z. Hua-yue, J. Ru, G. Yu-jiang, F. Yong-qian, X. Ling, Z. Guangming,
Effect of key operational factors on decolorization
of methyl orange during H2O2 assisted CdS/TiO2/polymer
nanocomposite thin films under simulated solar light
irradiation, Sep. Purif. Technol., 74 (2010) 187–194.
- P. Niu, J. Hao, Photocatalytic degradation of methyl orange by
titanium dioxide-decatungstate nanocomposite films supported
on glass slides, Colloids surf., A, 431 (2013) 127–132.
- M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic
discoloration of methyl orange solution by Pt modified TiO2
loaded on natural zeolite, Dyes Pigm., 77 (2008) 327–334.
- D. Rajamanickam, M. Shanthi, Photocatalytic degradation of an
organic pollutant by zinc oxide–solar process, Arabian J. Chem.,
9 (2016) S1858–S1868.
- Q. Zhang, C. Li, T. Li, Rapid photocatalytic degradation
of Methylene Blue under high photon flux UV irradiation:
characteristics and comparison with routine low photon
flux, Int. J. Photoenergy, 2012 (2012) 1–7, https://doi.
org/10.1155/2012/398787.
- M. Kulkarni, P. Thakur, Photocatalytic degradation and
mineralization of reactive textile azo dye using semiconductor
metal oxide nanoparticles, Int. J. Eng. Res. Gen. Sci., 2 (2014)
245–254.
- P. Dharmarajan, A. Sabastiyan, M. Yosuva Suvaikin, S. Titus,
C. Muthukumar, Photocatalytic degradation of reactive
dyes in effluents employing copper doped titanium dioxide
nanocrystals and direct sunlight, Chem. Sci. Trans., 2 (2013)
1450–1458.
- K. Soutsas, V. Karayannis, I. Poulios, A. Riga, K. Ntampegliotis,
X. Spiliotis, G. Papapolymerou, Decolorization and degradation
of reactive azo dyes via heterogeneous photocatalytic processes,
Desalination, 250 (2010) 345–350.
- A. Bouarioua, M. Zerdaoui, Photocatalytic activities of TiO2
layers immobilized on glass substrates by dip-coating technique
toward the decolorization of methyl orange as a model organic
pollutant, J. Environ. Chem. Eng., 5 (2017) 1565–1574.
- L. Andronic, S. Manolache, A. Duta, Photocatalytic degradation
of methyl orange: influence of H2O2 in the TiO2-based system,
J. Nanosci. Nanotechnol., 8 (2008) 728–732.
- S. Haji, B. Benstaali, N. Al-Bastaki, Degradation of methyl
orange by UV/H2O2 advanced oxidation process, Chem. Eng.
J., 168 (2011) 134–139.
- M.A. Barakat, J.M. Tseng, C.P. Huang, Hydrogen peroxideassisted
photocatalytic oxidation of phenolic compounds, Appl.
Catal., B, 59 (2005) 99–104.
- M. Kulkarni, P. Thakur, Photocatalytic degradation of real
textile industrial effluent under UV light catalyzed by metal
oxide nanoparticles, Nepal J. Sci. Technol., 15 (2014) 105–110.
- H. Trabelsi, G.P. Atheba, O. Hentati, Y.D. Mariette, D. Robert,
P. Drogui, M. Ksibi, Solar photocatalytic decolorization and
degradation of methyl orange using supported TiO2, J. Adv.
Oxid. Technol., 19 (2016) 79–84.
- D. Ljubas, G. Smoljanic, H. Juretic, Degradation of methyl
orange and congo red dyes by using TiO2 nanoparticles
activated by the solar and the solar-like radiation, J. Environ.
Manage., 161 (2015) 83–91.
- H.Y. Shu, M.C. Chang, H.J. Fan, Decolorization of azo dye acid
black 1 by the UV/H2O2 process and optimization of operating
parameters, J. Hazard. Mater., B113 (2004) 201–208.
- M. Seyedsalehi, S. Mousavian, S. Eslamian, M.H. Shahmoradi,
Removal efficiency of (AO7) Acid Orange 7 color using the
advanced oxidation of modified UV/H2O2 with zero-valent iron,
Bull. Environ. Pharmacol. Life Sci., 4 (2015) 140–149.
- P. Manikandan, P.N. Palanisamy, R. Ramya, D. Nalini,
Evaluation of UV/H2O2 advanced oxidation process (AOP)
for the degradation of acid orange7 and basic violet 14 dye in
aqueous solution, Int. J. Emerging Technol. Comput. Appl. Sci.,
9 (2014) 148–151.
- N. Daneshvar, M.A. Behnajady, M. Khayyat Ali Mohammadi,
M.S. Seyed Dorraji, UV/H2O2 treatment of Rhodamine B in
aqueous solution: influence of operational parameters and
kinetic modeling, Desalination, 230 (2008) 16–26.
- E. Basturk, M. Karatas, Decolorization of antraquinone dye
Reactive Blue 181 solution by UV/H2O2 process, J. Photochem.
Photobiol., 299 (2015) 67–72.
- H. Zangeneh, A.A.L. Zinatizadeha, M. Habibi, M. Akia,
M. Hasnain Isa, Photocatalytic oxidation of organic dyes and
pollutants in wastewater using different modified titanium
dioxides: a comparative review, J. Ind. Eng. Chem., 26 (2015)
1–36.
- M. Vaez, A.Z. Moghaddam, N.M. Mahmoodi, S. Alijani,
Decolorization and degradation of acid dye with immobilized
titania nanoparticles, Process Saf. Environ. Prot., 90 (2012)
56–64.
- N. Bouanimba, R. Zouaghi, N. Laid, T. Sehili, Factors influencing
the photocatalytic decolorization of bromophenol blue in
aqueous solution with different types of TiO2 as photocatalysts,
Desalination, 275 (2011) 224–230.
- A. Zuorro, R. Lavecchia, Evaluation of UV/H2O2 advanced
oxidation process (AOP) for the degradation of diazo dye
Reactive Green 19 in aqueous solution, Desal. Wat. Treat.,
52 (2013) 1571–1577.
- K. Ouyang, S. Xie, X. Ma, Effect of key operational factors
on decolorization of methyl orange by multi-walled carbon
nanotubes (MWCNTs)/TiO2/CdS composite under simulated
solar light irradiation, Ceram. Int., 39 (2013) 8035–8042.
- D.H. Tseng, L.C. Juang, H.H. Huang, Effect of oxygen
and hydrogen peroxide on the photocatalytic degradation
of monochlorobenzene in TiO2 aqueous suspension,
Int. J. Photoenergy, 2012 (2012) 1–9, https://doi.
org/10.1155/2012/328526.
- C. Yaman, G.A. Gündüz, Parametric study on the decolorization
and mineralization of C.I. Reactive Red 141 in water by
heterogeneous Fenton-like oxidation over FeZSM-5 zeolite,
J. Environ. Health Sci. Eng., 13 (2015) 1–12.