References

  1. Z. Aksu, Ö. Tunç, Application of biosorption for penicillin G removal: comparison with activated carbon, Process Biochem., 40 (2005) 831–847.
  2. S. Ardashiri, S. Hashemi, B. Ramavandi, S. Dobaradaran, Modifying Amygdalus scoparia biochar with MgO for eliminating tetracycline from aqueous solutions, Desal. Wat. Treat., 111 (2018) 351–360.
  3. E.U. Cokgor, I.A. Alaton, O. Karahan, S. Dogruel, D. Orhon, Biological treatability of raw and ozonated penicillin formulation effluent, J. Hazard. Mater., 116 (2004) 159–166.
  4. H. Arfaeinia, K. Sharafi, S. Banafshehafshan, S. Hashemi, Degradation and biodegradability enhancement of chloramphenicol and azithromycin in aqueous solution using heterogeneous catalytic ozonation in the presence of MgO nanocrystalline comparison with single ozonation, Int. J. Pharm. Technol., 8 (2016) 10931–10948.
  5. H. Arfaeinia, B. Ramavandi, K. Sharafi, S. Hashemi, Reductive degradation of ciprofloxacin in aqueous using nanoscale zero-valent iron modificated by Mg-aminoclay, Int. J. Pharm. Technol., 8 (2016) 13125–13136.
  6. R. Kafaei, F. Papari, M. Seyedabadi, S. Sahebi, R. Tahmasebi, M. Ahmadi, G.A. Sorial, G. Asgari, B. Ramavandi, Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran, Sci. Total Environ., 627 (2018) 703–712.
  7. A.B. Boxall, D.W. Kolpin, B. Halling-Sørensen, J. Tolls, Peer reviewed: are veterinary medicines causing environmental risks?, Environ. Sci. Technol., 37 (2003) 286A–294A.
  8. B. Halling-Sørensen, S.N. Nielsen, P. Lanzky, F. Ingerslev, H.H. Lützhøft, S. Jørgensen, Occurrence, fate, and effects of pharmaceutical substances in the environment-a review, Chemosphere, 36 (1998) 357–393.
  9. J. Tolls, Sorption of veterinary pharmaceuticals in soils: a review, Environ. Sci. Technol., 35 (2001) 3397–3406.
  10. C. Henney, A Handbook of Drugs, 2nd ed., Edinburg New York, Churchill Livingstone, 1986.
  11. D. Mandloi, S. Joshi, P.V. Khadikar, N. Khosla, QSAR study on the antibacterial activity of some sulfa drugs: building blockers of Mannich bases, Bioorg. Med., 15 (2005) 405–411.
  12. M. Tahergorabi, A. Esrafili, M. Kermani, M. Gholami, M. Farzadkia, Degradation of four antibiotics from aqueous solution by ozonation: intermediates identification and reaction pathways, Desal. Wat. Treat., 139 (2019) 277–287.
  13. W.-Q. Guo, R.-L. Yin, X.-J. Zhou, J.-S. Du, H.-O. Cao, S.-S. Yang, N.-Q. Ren, Sulfamethoxazole degradation by ultrasound/ ozone oxidation process in water: kinetics, mechanisms, and pathways, Ultrason. Sonochem., 22 (2015) 182–187.
  14. I. Abe, S. Iwasaki, T. Tokimoto, N. Kawasaki, T. Nakamura, S. Tanada, Adsorption of fluoride ions onto carbonaceous materials, J. Colloid Interface Sci., 275 (2004) 35–39.
  15. T.A. Ternes, A. Joss, H. Siegrist, Peer-reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment, Environ. Sci. Technol., 38 (2004) 392A–399A.
  16. B. Ramavandi, S. Akbarzadeh, Removal of metronidazole antibiotic from contaminated water using a coagulant extracted from Plantago ovata, Desal. Wat. Treat., 55 (2015) 2221–2228.
  17. B. Xu, D. Mao, Y. Luo, L. Xu, Sulfamethoxazole biodegradation and biotransformation in the water–sediment system of a natural river, Bioresour. Technol., 102 (2011) 7069–7076.
  18. M. Carballa, F. Omil, J.M. Lema, M. Llompart, C. García-Jares, I. Rodríguez, M. Gomez, T. Ternes, Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant, Water Res., 38 (2004) 2918–2926.
  19. I.R. Bautitz, R.F.P. Nogueira, Degradation of tetracycline by photo-Fenton process—Solar irradiation and matrix effects, J. Photochem. Photobiol., A, 187 (2007) 33–39.
  20. U. Hammesfahr, H. Heuer, B. Manzke, K. Smalla, S. Thiele- Bruhn, Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils, Soil Biol. Biochem., 40 (2008) 1583–1591.
  21. S. Park, K. Choi, Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems, Ecotoxicology, 17 (2008) 526–538.
  22. S.K. Khetan, T.J. Collins, Human pharmaceuticals in the aquatic environment: a challenge to green chemistry, Chem. Rev., 107 (2007) 2319–2364.
  23. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  24. V.K. Sharma, S.K. Mishra, A.K. Ray, Kinetic assessment of the potassium ferrate (VI) oxidation of antibacterial drug sulfamethoxazole, Chemosphere, 62 (2006) 128–134.
  25. R.F. Dantas, S. Contreras, C. Sans, S. Esplugas, Sulfamethoxazole abatement by means of ozonation, J. Hazard. Mater., 150 (2008) 790–794.
  26. P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol, J. Hazard. Mater., 149 (2007) 609–614.
  27. H. Tekin, O. Bilkay, S.S. Ataberk, T.H. Balta, I.H. Ceribasi, F.D. Sanin, F.B. Dilek, U. Yetis, Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater, J. Hazard. Mater., 136 (2006) 258–265.
  28. E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 109 (2009) 6570–6631.
  29. Q. Guo, G. Li, D. Liu, Y. Wei, Synthesis of zeolite Y promoted by Fenton’s reagent and its application in photo-Fenton-like oxidation of phenol, Solid State Sci., 91 (2019) 89–95.
  30. A. Ruíz-Delgado, M.A. Roccamante, I. Oller, A. Agüera, S. Malato, Natural chelating agents from olive mill wastewater to enable photo-Fenton-like reactions at natural pH, Catal. Today, 328 (2019) 281–285.
  31. C. Lai, F. Huang, G. Zeng, D. Huang, L. Qin, M. Cheng, C. Zhang, B. Li, H. Yi, S. Liu, L. Li, L. Chen, Fabrication of novel magnetic MnFe2O4/bio-char composite and heterogeneous photo-Fenton degradation of tetracycline in near-neutral pH, Chemosphere, 224 (2019) 910–921.
  32. G. Ginni, S. Adishkumar, J. Rajesh Banu, N. Yogalakshmi, Treatment of pulp and paper mill wastewater by solar photo- Fenton process, Desal. Wat. Treat., 52 (2014) 2457–2464.
  33. Y. Huang, T. Zhou, X. Wu, J. Mao, Efficient sonoelectrochemical decomposition of sulfamethoxazole adopting common Pt/ graphite electrodes: the mechanism and favorable pathways, Ultrason. Sonochem., 38 (2017) 735–743.
  34. J. Martini, C.A. Orge, J.L. Faria, M.F.R. Pereira, O.S.G.P. Soares, Sulfamethoxazole degradation by combination of advanced oxidation processes, J. Environ. Chem. Eng., 6 (2018) 4054–4060.
  35. R. Yuan, Y. Zhu, B. Zhou, J. Hu, Photocatalytic oxidation of sulfamethoxazole in the presence of TiO2: effect of matrix in aqueous solution on decomposition mechanisms, Chem. Eng. J., 359 (2019) 1527–1536.
  36. M. Kwon, Y. Yoon, S. Kim, Y. Jung, T.-M. Hwang, J.-W. Kang, Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: a comparative evaluation of 275 nm LED-UV and 254 nm LP-UV, Sci. Total Environ., 637–638 (2018) 1351–1357.
  37. N. Ninwiwek, P. Hongsawat, P. Punyapalakul, P. Prarat, Removal of the antibiotic sulfamethoxazole from environmental water by mesoporous silica-magnetic graphene oxide nanocomposite technology: adsorption characteristics, co-adsorption, and uptake mechanism, Colloids Surf., A, 580 (2019) 123716.
  38. S.R. Pouran, A.A. Aziz, W.M.A.W. Daud, Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters, J. Ind. Eng. Chem., 21 (2015) 53–69.
  39. T.T.N. Phan, A.N. Nikoloski, P.A. Bahri, D. Li, Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light, J. Ind. Eng. Chem., 61 (2018) 53–64.
  40. Y. Ahmed, Z. Yaakob, P. Akhtar, Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation, Catal. Sci. Technol., 6 (2016) 1222–1232.
  41. H. Pourzamani, N. Mengelizadeh, Y. Hajizadeh, H. Mohammadi, Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes, Environ. Sci. Pollut. Res., 25 (2018) 24746–24763.
  42. M. Malakootian, A. Moridi, Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions, Process Saf. Environ. Prot., 111 (2017) 138–147.
  43. E.S. Elmolla, M. Chaudhuri, Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process, J. Hazard. Mater., 172 (2009) 1476–1481.
  44. S.-P. Sun, H.-Q. Guo, Q. Ke, J.-H. Sun, S.-H. Shi, M.-L. Zhang, Q. Zhou, Degradation of antibiotic ciprofloxacin hydrochloride by photo-Fenton oxidation process, Environ. Eng. Sci., 26 (2009) 753–759.
  45. J. Sun, J. Feng, S. Shi, Y. Pi, M. Song, Y. Shi, Degradation of the antibiotic sulfamonomethoxine sodium in aqueous solution by photo-Fenton oxidation, Chin. Sci. Bull., 57 (2012) 558–564.
  46. L. Xu, J. Wang, Fenton-like degradation of 2, 4-dichlorophenol using Fe3O4 magnetic nanoparticles, Appl. Catal., B, 123 (2012) 117–126.
  47. D. Possetto, J. Natera, M.I. Sancho, N.A. García, W.A. Massad, Bioallethrin degradation by photo-Fenton process in acetonitrile/water and aqueous β-cyclodextrin solutions, J. Photochem. Photobiol., A, 365 (2018) 103–109.
  48. J. Deng, Y. Shao, N. Gao, Y. Deng, C. Tan, S. Zhou, Zero-valent iron/persulfate (Fe0/PS) oxidation acetaminophen in water, Int. J. Environ. Sci. Technol., 11 (2014) 881–890.
  49. A. Mashayekh-Salehi, G. Moussavi, K. Yaghmaeian, Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant, Chem. Eng. J., 310 (2017) 157–169.
  50. C. Zhang, M. Zhou, G. Ren, X. Yu, L. Ma, J. Yang, F. Yu, Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2, 4-dichlorophenol degradation: influence factors, mechanism and degradation pathway, Water Res., 70 (2015) 414–424.
  51. E. Lee, H. Lee, Y. Kim, K. Sohn, K. Lee, Hydrogen peroxide interference in chemical oxygen demand during ozonebased advanced oxidation of anaerobically digested livestock wastewater, Int. J. Environ. Sci. Technol., 8 (2011) 381–388.