References

  1. I. Baniasad. Askari, M. Ameri, Combined linear Fresnel solar rankine cycle with multi effect desalination (MED) process: effect of solar DNI level on the electricity and water production cost, Desal. Wat. Treat., 126 (2018) 97–115.
  2. A. Javadpour, Kh. Lari, E. Jahanshahi, I. Baniasad Askari, Techno-economic analysis of combined gas turbine, MED and RO desalination systems to produce electricity and drinkable water, Desal. Wat. Treat., 159 (2019) 232–249.
  3. Sh. Gorjian, B. Ghobadian. Solar desalination: a sustainable solution to water crisis in Iran, Renew. Sustain. Energy Rev., 48 (2015) 571–584.
  4. I. Baniasad Askari, M. Ameri, F. Calise, Energy, exergy and exergo-economic analysis of different water desalination technologies powered by linear Fresnel solar field, Desalination, 428 (2018) 37–67.
  5. S.M. Alelyan, N.W. Fette, E.B. Stechel, P. Doron, P.E. Phelan, Techno-economic analysis of combined ammonia-water absorption refrigeration and desalination, Energy Convers. Manage., 143 (2017) 493–504.
  6. I. Janghorban Esfahani, Ch. Yoo, A highly efficient combined multi-effect evaporation-absorption heat pump and vaporcompression refrigeration part 2: Thermo economic and flexibility analysis, Energy, 75 (2014) 327–337.
  7. Z.M. Amin, M.N.A. Hawlader, Analysis of solar desalination system using heat pump, Renew. Energy, 74 (2015) 116–123.
  8. I. Baniasad Askari, M. Ameri, The application of Linear Fresnel and Parabolic Trough solar fields as thermal source to produce electricity and fresh water, Desalination, 415 (2017) 90–103.
  9. I. Baniasad Askari, M. Ameri, Solar Rankin cycle (SRC) powered by linear Fresnel solar field and integrated with combined MED desalination system, Renew. Energy, 117 (2018) 52–70.
  10. A. Tamburini, A. Cipollina, G. Micale, A. Piacentino, CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design options under the current legislative EU framework, Energy, 115 (2016) 1548–155.
  11. I. Baniasad Askari, M. Ameri, M. Technoeconomic feasibility analysis of MED/TVC desalination unit powered by linear Fresnel solar field direct steam, Desalination, 394 (2016) 1–17.
  12. P. Catrini, A. Cipollina G. Micale, A. Piacentino, A. Tamburini, Exergy analysis and thermoeconomic cost accounting of a combined heat and power steam cycle integrated with a multi effect distillation-thermal vapour compression desalination plant, Energy Convers. Manage., 149 (2017) 950–965.
  13. A. Kouta, G. Al-Sulaima, M. Atif, S. Bin Marshad, Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO2 Brayton cycles and MEE-TVC desalination system, Energy Convers. Manage., 115 (2016) 253–264.
  14. A.O. Bin Amer, Development and optimization of ME-TVC desalination system, Desalination, 249 (2009) 1315–1331.
  15. I.S. Al-Mutaz, I. Wazeer, Development of a steady-state mathematical model for MEE-TVC desalination plants, Desalination, 351 (2014) 9–18.
  16. F.N. Alasfour, M.N. Darwish, A.O. Bin Amer, Thermal analysis of ME-TVC+MEE desalination systems, Desalination, 174 (2005) 39–61.
  17. B. Ortega-Delgado, P. Palenzuela, D.C. Alarcón-Padilla, Parametric study of a multi-effect distillation plant with thermal vapor compression for its integration in to a Rankine cycle power block, Desalination, 394 (2016) 18–29.
  18. R. Kouhikamali, M. Sanaei, M. Mehdizadeh, Process investigation of different locations of thermo-compressor suction in MED-TVC plants, Desalination, 280 (2011) 134–138.
  19. H. Fathia, Kh. Tahar, B.Y. Ali, B.B. Ammar, Exergoeconomic optimization of a double effect desalination unit used in an industrial steam power plant, Desalination, 438 (2018) 63–82.
  20. K. Khalid, M. Antar, A. Khalifa, O. Hamed, Allocation of thermal vapor compressor in multi-effect desalination systems with different feed configurations, Desalination, 426 (2018) 164–173.
  21. M.L. Elsayed, O. Mesalhy, R.H. Mohammed, L.C. Chow, Exergy and thermo-economic analysis for MED-TVC desalination systems, Desalination, 447 (2018) 29–42.
  22. R. Kouhikamali, Thermodynamic analysis of feed water preheaters in multiple effect distillation systems, Appl. Thermal Eng., 50 (2013) 1157–1163.
  23. M.L. Elsayed, O. Mesalhya, R.H. Mohammed, L.C. Chow, Effect of input parameters intensity and duration on dynamic performance of MED-TVC Plant, Appl. Thermal Eng., 137 (2018) 475–486.
  24. M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, Thermophysical properties of seawater: a review of existing correlations and data. Desal. Wat. Treat., 16 (2010) 354–380.
  25. A.S. Hassan, M.A. Darwish, Performance of thermal vapor compression, Desalination, 35 (2014) 41–46.
  26. F. Calise. M.D. d›Accadia. A. Piacentino, Exergetic and exergoeconomic analysis of a renewable polygeneration system and viability study for small isolated communities, Energy, 92 (2015) 290–307.
  27. F. Calise, M.D. d’Accadia, A. Macaluso, A. Piacentino, L. Vanoli, Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water, Energy Convers. Manage., 115 (2016) 200–220.
  28. Fichtner (Fichtner GmbH & Co. KG) and DLR (Deutsches Zentrum für Luft und Raumfahrt e.V.), MENA Regional Water Outlook, Part II, Desalination Using Renewable Energy, Task 1–Desalination Potential; Task 2–Energy Requirements; Task 3–Concentrate Management. 2011, available at: http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/projects/MENA_REGIONAL_WATER_OUTLOOK.pdf.