References

  1. R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83 (1993) 81–150.
  2. R. Rautenbach, A. Gröschl, Separation potential of nanofiltration membranes, Desalination, 77 (1990) 73–84.
  3. J. Kucera, Reverse Osmosis: Design, Process and Application for Engineers, 2nd ed., Wiley Scrivener Publishing, Beverly, 2015.
  4. Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater., 23 (2013) 3693–3700.
  5. H.C. Van der Horst, J.M.K. Timmer, R.J. Leeders, Use of nanofiltration for concentration and demineralization in the dairy industry: model for mass transport, J. Membr. Sci., 104 (1995) 205–218.
  6. D. Peshev, L.G. Peeva, G. Peev, I.I.R. Baptista, A.T. Boam, Application of organic solvent nanofiltration for concentration of antioxidant extracts of rosemary (Rosmarinus officiallis L.), Chem. Eng. Res. Des., 89 (2011) 318–327.
  7. A.M. Mika, R.F. Childs, J.M. Dickson, Ultra-low pressure water softening: a new approach to membrane construction, Desalination, 121 (1999) 149–158.
  8. H.S. Alkhatim, M.I. Alcaina, E. Soriano, M.I. Iborra, J. Lora, J. Arnal, Treatment of whey effluents from dairy industries by nanofiltration membranes, Desalination, 119 (1998) 177–183.
  9. A. Román, J. Wang, J. Csanádi, C. Hodúr, G. Vatai, Partial demineralization and concentration of acid whey by nanofiltration combined with diafiltration, Desalination, 241 (2009) 288–295.
  10. E. Vellenga, G. Tragardh, Nanofiltration of combined salt and sugar solutions: coupling between retentions, Desalination, 120 (1998) 211–220.
  11. H.J. Zwijnenberg, A.M. Krosse, K. Ebert, K.V. Peinemann, F.P. Cuperus, Acetone-stable nanofiltration membranes in deacidifying vegetable oil, J. Am. Oil Chem. Soc., 76 (1999) 83–87.
  12. S. Cartier, M.A. Theoleyre, M. Decloux, Treatment of sugar decolorizing resin regeneration waste using nanofiltration, Desalination, 113 (1997) 7–17.
  13. S. Wadley, C.J. Brouckaert, L.A.D. Baddock, C.A. Buckley, Modeling of nanofiltration applied to the recovery of salt from waste brine at a sugar decolorization plant, J. Membr. Sci., 102 (1995) 163–175.
  14. A. Srivastava, A.N. Pathak, Modern technologies for distillery effluent treatment, J. Sci. Ind. Res., 57 (1998) 388–392.
  15. J.M.K. Timmer, H.C. van der Horst, T. Robbertsen, Transport of lactic acid through reverse osmosis and nanofiltration membranes, J. Membr. Sci., 85 (1993) 205–216.
  16. J.M.K. Timmer, J. Kromkamp, T. Robbertsen, Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration, J. Membr. Sci., 92 (1994) 185–197.
  17. I.S. Han, M. Cheryan, Nanofiltration of model acetate solutions, J. Membr. Sci., 107 (1995) 107–113.
  18. J.M.K. Timmer, M.P.J. Speelmans, H.C. van der Horst, Separation of amino acids by nanofiltration and ultrafiltration membranes, Sep. Purif. Technol., 14 (1998) 133–144.
  19. J. Sojka Ledakowicz, T. Koprowski, W. Machnowski, H.H. Knudsen, Membrane filtration of textile dyehouse wastewater for technological water reuse, Desalination, 119 (1998) 1–10.
  20. R.W. Bowen, W.A. Mohammad, A theoretical basis for specifying nanofiltration membranes - dye/salt/water streams, Desalination, 117 (1998) 257–264.
  21. J. Wu, M. Eiteman, S.E. Law, Evaluation of membrane filtration and ozonation processes for treatment of reactive-dye wastewater, J. Environ. Eng., 124 (1998) 272–277.
  22. A. Cassano, E. Drioli, R. Molinari, Recovery and reuse of chemicals in unhairing, degreasing and chromium tanning processes by membranes, Desalination, 113 (1997) 251–261.
  23. A. Cassano, E. Drioli, R. Molinari, C. Bertolutti, Quality improvement of recycled chromium in the tanning operation by membrane processes, Desalination, 108 (1997) 193–203.
  24. K.H. Ahn, H.Y. Cha, I.T. Yeom, K.G. Song, Application of nanofiltration for recycling of paper regeneration wastewater and characterization of filtration resistance, Desalination, 119 (1998) 169–176.
  25. M. Manttari, J.N. Jokinen, M. Nystrom, Influence of filtration conditions on the performance of NF membranes in the filtration of paper mill total effluent, J. Membr. Sci., 137 (1997) 187–199.
  26. M.D. Afonso, M. Norberta De Pinho, Nanofiltration of bleaching pulp and paper effluents in tubular polymeric membranes, Sep. Sci. Technol., 32 (1997) 2641–2658.
  27. M.D. Afonso, M. Norberta De Pinho, Treatment of Bleaching Effluents by Pressure-Driven Membrane Processes - A Review, A. Caetano, M. Norberta de Pinho, Drioli, H. Muntau, Eds., Membrane Technology: Applications to Industrial Wastewater Treatment, Kluwer Academic Publishers, The Netherlands, 1995, pp. 63–79.
  28. V. Geraldes, M. Norberta de Pinho, Process water recovery from pulp bleaching effluents by an NF/ED hybrid process, J. Membr. Sci., 102 (1995) 209–221.
  29. M.J. Rosa, M. Norberta de Pinho, The role of ultrafiltration and nanofiltration on the minimisation of the environmental impact of bleached pulp effluents, J. Membr. Sci., 102 (1995) 155–161.
  30. M.B. Hagg, Membranes in chemical processing. A review of applications and novel developments, Sep. Purif. Methods, 27 (1998) 151–168.
  31. K.F. Lin, Bromide Separation and Concentration using Semi- Permeable Membranes, U.S. Patent, 19 (1995) 5458781.
  32. L.P. Raman, M. Cheryan, N. Rajagopalan, Consider nanofiltration for membrane separations, Chem. Eng. Prog., 90 (1994) 68–74.
  33. C. Jönsson, A.S. Jönsson, The influence of degreasing agents used at car washes on the performance of ultrafiltration membranes, Desalination, 100 (1995) 115–123.
  34. C. Visvanathan, B.D. Marsono, B. Basu, Removal of THMP by nanofiltration: effects of interference parameters, Water Res., 32 (1998) 3527–3538.
  35. J. Schaep, B. Van der Bruggen, S. Uytterhoeven, R. Croux, C. Van de casteele, D. Wilms, E. Van Houtte, F. Vanlerberghe, Removal of hardness from groundwater by nanofiltration, Desalination, 119 (1998) 295–302.
  36. E. Wittmann, P. Cote, C. Medici, J. Leech, A.G. Turner, Treatment of a hard borehole water containing low levels of pesticide by nanofiltration, Desalination, 119 (1998) 347–352.
  37. N.A. Braghetta, F. DiGiano, W.P. Ball, NOM accumulation at NF membrane surface: impact of chemistry and shear, J. Environ. Eng., 124 (1998) 1087–1098.
  38. A.I. Schafer, A.G. Fane, T.D. Waite, Nanofiltration of natural organic matter: removal, fouling and the influence of multivalent ions, Desalination, 118 (1998) 109–122.
  39. M. Alborzfar, G. Jonsson, C. Gron, Removal of natural organic matter from two types of humic ground waters by nanofiltration, Water Res., 32 (1998) 2983–2994.
  40. B. Van der Bruggen, J. Schaep, W. Maes, D. Wilms, C. Vandecasteele, Nanofiltration as a treatment method for the removal of pesticides from ground waters, Desalination, 117 (1998) 139–147.
  41. P. Brandhuber, G. Amy, Alternative methods for membrane filtration of arsenic from drinking water, Desalination, 117 (1998) 1–10.
  42. T. Urase, J.I. Ohb, K. Yamamoto, Effect of pH on rejection of different species of arsenic by nanofiltration, Desalination, 117 (1998) 11–18.
  43. B. Lew, L. Trachtengertz, S. Ratsin, G. Oron, A. Bick, Brackish groundwater membrane system design for sustainable irrigation: optimal configuration selection using analytic hierarchy process and multi-dimension scaling, Front. Environ. Sci., 2 (2014) 56 1–10.
  44. A.H. Mahvi, M. Malakootian, A. Fatehizadeh, M.H. Ehrampoush, Nitrate removal from aqueous solutions by nanofiltration, Desal. Wat. Treat., 29 (2011) 326–330.
  45. J. Shen, A. Schäfer, Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review, Chemosphere, 117 (2014) 679–691.
  46. L. Meihong, Y. Sanchuan, Z. Yong, G. Congjie, Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous: preparation and performance, J. Membr. Sci., 310 (2008) 289–295.
  47. C. Blöcher, C. Niewersch, T. Melin, Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration, Water Res., 46 (2012) 2009–2019.
  48. J.A. Westrick, D.C. Szlag, B.J. Southwell, J. Sinclair, A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment, Anal. Bioanal. Chem., 397 (2010) 1705–1714.
  49. A.A. Abbas, G. Jingsong, L. Zhi Ping, P. Ying Ya, W.S. Al-Rekabi, Review on landfill leachate treatments, Am. J. Appl. Sci., 6 (2009) 672–684.
  50. Y.K. Kharaka, G. Ambats, T. Presser, R.A. Davis, Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes, Appl. Geochem., 11 (1996) 797–802.
  51. J. Wagner, Membrane Filtration Handbook: Practical Tips and Hints, 2nd ed., Osmonics Inc., USA, 2001.
  52. B. Shi, P. Marchetti, D. Peshev, S. Zhang, A.G. Livingston, Performance of spiral-wound membrane modules in organic solvent nanofiltration–fluid dynamics and mass transfer characteristics, J. Membr. Sci., 494 (2015) 8–24.
  53. C. Bellona, J.E. Drewes, P. Xu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review, Water Res., 38 (2004) 2795–2809.
  54. W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofiltration-critical assessment and model development, Chem. Eng. Sci., 57 (2002) 1121–1137.
  55. G. Jonsson, Overview of theories for water and solutes transport in 9 UF/RO membranes, Desalination, 35 (1980) 21–38.
  56. J.G. Wijmans, R.W. Baker, The solution–diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
  57. R. Rautenbach, A. Groschl, Reverse Osmosis of Aqueous Organic Solutions: Material Transport and Process Design, Presented at the 1990 International Congress on Membranes and Membrane Processes, Chicago, IL, Aug 20–24, 1990.
  58. R. Rautenbach, A. Groschl, Fractionation of Aqueous Organic Mixtures by Reverse Osmosis, Presented at the 203rd American Chemical Society National Meeting, San Francisco, CA, April 5–10, 1992.
  59. R. Rautenbach, A. Groschl, Fractionation of aqueous organic mixtures by reverse osmosis, Desalination, 90 (1993) 93–106.
  60. M.E. Williams, J.A. Hestekin, C.N. Smothers, D. Bhattacharyya, Separation of organic pollutants by reverse osmosis and nanofiltration membranes: mathematical models and experimental verification, Ind. Eng. Chem. Res., 38 (1999) 3683–3695.
  61. S. Sourirajan, T. Matsuura, Reverse Osmosis/Ultrafiltration Process Principles, National Research Council of Canada, Ottawa, Canada, 1985.
  62. L.W. Jye, A.F. Ismail, Nanofiltration Membranes: Synthesis, Characterization and Application, CRC Press, Taylor & Francis Group, 2017.
  63. O. Kedem, A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 27 (1958) 229–246.
  64. R. Schlögl, Non-linear transport behaviour in very thin membranes, Q. Rev. Biophys., 2 (1969) 305–313.
  65. W.R. Galey, J.T. Van Bruggen, The coupling of solute fluxes in membranes, J. Gen. Physiol., 55 (1970) 220–242.
  66. K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  67. P. Schirg, F. Widmer, Characterization of nanofiltration membranes for the separation of aqueous dye-salt solutions, Desalination, 89 (1992) 89–107.
  68. M. Perry, C. Linder, Intermediate reverse osmosis ultrafiltration (RO-UF) membranes for concentration and desalting of low molecular weight organic solutes, Desalination, 71 (1989) 233–245.
  69. A.L. Ahmad, M.F. Chong, S. Bhatia, Mathematical modelling and simulation of the multiple solutes system for nanofiltration process, J. Membr. Sci., 253 (2005) 103–115.
  70. D. Van Gauwbergen, J. Baeyens, C. Creemers, Modelling osmotic pressures for aqueous solutions for 2-1 and 2-2 electrolytes, Desalination, 109 (1997) 57–65.
  71. A.L. Ahmad, M.F. Chong, S. Bhatia, Mathematical modelling of multiple solutes system for reverse osmosis process in palm oil mill effluent (POME) treatment, Chem. Eng. J., 132 (2007) 183–193.
  72. S. Wadley, C.J. Brouckaert, L.A.D. Badock, C.A. Buckley, Modelling of nanofiltration applied to the recovery of salt from waste brine at a sugar decolourisation plant, J. Membr. Sci., 102 (1995) 163–175.
  73. V.K. Gupta, S.T. Hwang, W.B. Krantz, A.R. Greenberg, Characterization of nanofiltration and reverse osmosis membrane performance for aqueous salt solutions using irreversible thermodynamics, Desalination, 208 (2007) 1–18.
  74. W. Nernst, Die elektromotorische wirksamkeit der Jonen, Z. Phys. Chem., 4 (1889) 129–181.
  75. M. Planck, Uber die Erregung von Elektrizitat und Warme in Elektrolyten, Annalen der Physik und Chemie H., Band XL, 1890, pp. 561–567.
  76. R. Schlögl, Stofftransport durch Membranen, Darmstadt, Steinkopff-verlag, 1964.
  77. L. Dresner, Some remarks on the integration of the extended Nernst–Planck equations in the hyperfiltration of multicomponent solutions, Desalination, 10 (1972) 27–46.
  78. T. Tsuru, M. Urairi, S. Nakao, S. Kimura, Reverse osmosis of single and mixed electrolytes with charged membranes: experiment and analysis, J. Chem. Eng. Jpn., 24 (1991) 518–524.
  79. J.M.M. Peeters, J.P. Boom, M.H.V. Mulder, H. Strathmann, Retention measurments of nanofiltration membranes with electrolyte solutions, J. Membr. Sci., 145 (1998) 199–209.
  80. J.M.M. Peeters, M.H.V. Mulder, H. Strathmann, Streaming potential measurements as a characterization method for nanofiltration membranes, Colloids Surf., 150 (1999) 247–259.
  81. Y.U. Kobatake, N. Kamo, Transport processes in charged membranes, Prog. Polym. Sci. Jpn., 5 (1973) 257–301.
  82. T. Tsuru, M. Urairi, S. Nakao, S. Kimura, Calculation of ion rejection by extended Nernst–Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions, J. Chem. Eng. Jpn., 24 (1991) 511–517.
  83. W.R. Bowen, H. Mukhtar, Characterization and prediction of separation performance of nanofiltration membranes, J. Membr. Sci., 112 (1996) 263–274.
  84. J.D. Ferry, Statistical evaluation of sieve constants in ultrafiltration, J. Gen. Physiol., 20 (1936) 95–104.
  85. W.R. Bowen, A.W. Mohammad, Diafiltration by nanofiltration: prediction and optimization, AIChE J., 44 (1998) 1799–1810.
  86. G. Hagmeyer, R. Gimbel, Modelling the salt rejection of nanofiltration membranes using zeta potential measurements, Sep. Purif. Technol., 15 (1999) 19–30.
  87. G. Hagmeyer, R. Gimbel, Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values, Desalination, 117 (1998) 247–256.
  88. Hunter, Zeta Potential in Colloid Science Academic, New York, 69, 1981.
  89. M. Born, Volumen and hydratationswärme der ionen, Z. Phys. Chem., 1 (1920) 45–48.
  90. M.D. Afonso, M.N. de Pinho, Transport of MgSO4, MgCl2 and Na2SO4 across anamphoteric nanofiltration membrane, J. Membr. Sci., 179 (2000) 137–154.
  91. P. Debye, E. Hückel, The theory of electrolytes I. The lowering of the freezing point and related occurrences, Zeit. für Phys., 24 (1923) 185.
  92. J.N. Israelachvili, Measurement of the viscosity of liquids in very thin films, J. Colloid Interface Sci., 110 (1986) 263–271.
  93. W.R. Bowen, J.S. Welfoot, P.M. Williams, Linearized transport model for nanofiltration: development and assessment, AlChE J., 48 (2002) 760–773.
  94. X. Lefebvre, J. Palmeri, J. Sandeaux, R. Sandeaux, P. David, B. Maleyre, C. Guizard, P. Amblard, J.F. Diaz, B. Lamaze, Nanofiltration modelling: a comparative study of the salt filtration performance of a charged ceramic membrane and an organic nanofilter using the computer simulation program NANOFLUX, Sep. Purif. Technol., 32 (2003) 117–126.
  95. X. Lefebvre, J. Palmeri, P. David, Nanofiltration theory: an analytic approach for single salts, J. Phys. Chem. B., 108 (2004) 16811–16824.
  96. S. Bandini, D. Vezzani, Nanofiltration modelling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
  97. D. Vezzani, S. Bandini, Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes, Desalination, 149 (2002) 477–483.
  98. J.G. Aleman, J.M. Dickson, Mathematical modelling of nanofiltration membranes with mixed electrolyte solutions, J. Membr. Sci., 235 (2004) 1–13.
  99. A. Szymczyk, P. Fievet, Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model, J. Membr. Sci., 252 (2005) 77–88.
  100. A.E. Yaroshchuk, Dielectric of ions from membranes, Adv. Colloid Interface Sci., 85 (2000) 193–230.
  101. V. Geraldes, A.M. Brites Alves, Computer program for simulation of mass transport in nanofiltration membranes, J. Membr. Sci., 321 (2008) 172–182.
  102. J. Straatsma, G. Bargeman, H.C. van der Horst, J.A. Wesselingh, Can nanofiltration be fully predicted by a model?, J. Membr. Sci., 198 (2002) 273–284.
  103. X.L. Wang, T. Tsuru, M. Togoh, S. Nakao, S. Kimura, Evaluation of pore structure and electrical properties of nanofiltration membranes, J. Chem. Eng. Jpn., 28 (1995) 186–192.
  104. S.I. Nakao, S. Kimura, Models of membrane transport phenomena and their applications for ultrafiltration data, J. Chem. Eng. Jpn., 15 (1982) 200–205.
  105. A. Yaroshchuk, X.M. Lladó, L. Llenas, M. Rovira, J. de Pablo, Solution-diffusion-film model for the description of pressuredriven trans-membrane transfer of electrolyte mixtures: one dominant salt and trace ions, J. Membr. Sci., 368 (2011) 192–201.
  106. M. Reig, N. Pagés, E. Licon, C. Valderrama, O. Gibert, A. Yaroshchuk, J.S. Cortina, Evolution of electrolyte mixtures rejection behavior using nanofiltration membranes under spiral wound and flat-sheet configurations, Desal. Wat. Treat., 52 (2014) 1–11.
  107. A. Yaroshchuk, M.L. Bruening, E. Zholkovskiy, Modelling nanofiltration of electrolyte solutions, Adv. Colloid Interface Sci., 268 (2019) 39–63.
  108. Y. Zhao, J. Taylor, S. Hong, Combined influence of membrane surface properties and feed water qualities on RO/NF mass transfer, a pilot study, Water Res., 39 (2005) 1233–1244.
  109. B. Van der Bruggen, C. Van de casteele, Modelling of the retention of uncharged molecules with nanofiltration, Water Res., 36 (2002) 1360–1368.
  110. F.F. Chang, W.J. Liu, X.M. Wang, Comparison of polyamide nanofiltration and low-pressure reverse osmosis membranes on As(III) rejection under various operational conditions, Desalination, 334 (2014) 10–16.
  111. S. Déon, B. Lam, P. Fievet, Application of a new dynamic transport model to predict the evolution of performances throughout the nanofiltration of single salt solutions in concentration and diafiltration modes, Water Res., 136 (2018) 22–33.
  112. N. Hilal, H. A1-Zoubi, N.A. Darwish, A.W. Mohammad, M. Abu Arabi, A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy, Desalination, 170 (2004) 281–308.
  113. Y. Roy, M.H. Sharqawy, J.H.V. Lienhard, Modeling of flatsheet and spiral-wound nanofiltration configurations and its application in seawater nanofiltration, J. Membr. Sci., 493 (2015) 630–642.
  114. V. Silva, V. Geraldes, A.M. Brites Alves, L. Palacio, P. Prádanos, A. Hernández, Multi-ionic nanofiltration of highly concentrated salt mixtures in the seawater range, Desalination, 277 (2011) 29–39.
  115. V. Hoshyargar, F. Fadaei, S.N. Ashrafizadeh, Mass transfer simulation of nanofiltration membranes for electrolyte solutions through generalized Maxwell–Stefan approach, Korean J. Chem. Eng., 32 (2015) 1388–1404.
  116. A.R. Hassan, N. Ali, N. Abdull, A.F. Ismail, A theoretical approach on membrane characterization: the deduction of fine structural details of asymmetric nanofiltration membranes, Desalination, 206 (2007) 107–126.
  117. M.A. Al-Obaidi, I.M. Mujtaba, Steady state and dynamic modeling of spiral wound waste water reverse osmosis process, Comput. Chem. Eng., 90 (2016) 278–299.
  118. Y. Garba, S. Taha, N. Gondrexon, G. Dorange, Ion transport modelling through nanofiltration membranes, J. Membr. Sci., 160 (1999) 187–200.
  119. P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level, Chem. Soc. Rev., 37 (2008) 365–405.