References
- X. Tian, J. Sarkis, Y. Geng, Y. Qian, C. Gao, R. Bleischwitz, Y. Xu,
Evolution of China’s water footprint and virtual water trade: a
global trade assessment, Environ. Int., 121 (2018) 178–188.
- World Health Organization, Progress on drinking water and
sanitation: 2012 update. UNICEF, WHO Geneva, (2012).
- S. Baruah, M. N. Khan, J. Dutta, Nanotechnology in water
treatment. In: Lichtfouse E, Schwarzbaur J, Robert D (eds.)
Pollutants in buildings, water and living organisms. Environ.
Chem. for a sustainable world, Springer International
Publishing, Switzerland, vol. 7 (2015) pp. 51–84.
- J. Nawrocki, Water Treatment. Chemical and Biological
Processes, Wydawnictwo Naukowe PWN, Warszawa, Poland,
2010 (in Polish).
- M. Bodzek, Membrane separation techniques – removal of
inorganic and organic admixtures and impurities from water
environment – review, Arch. Environ. Prot., 45 (2019) 4–19.
- L. Madhura, S. Singh, S. Kanchi, M. Sabela, K. Bisetty,
Nanotechnology based water quality management for
wastewater treatment, Environ. Chem. Lett., 17 (2018) 65–121.
- M. Bodzek, K. Konieczny, M. Rajca, Membranes in water and
wastewater disinfection – review, Arch. Environ. Prot., 45 (2019)
3–18.
- Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan,
Nanomaterials-enabled water and wastewater treatment, NanoImpact,
3–4 (2016) 22–39.
- F. Lu, D. Astruc, Nanomaterials for removal of toxic elements
from water, Coord. Chem. Rev., 356 (2018) 147–164.
- M. Kamali, K.M. Persson, M.E. Costa, I. Capela, Sustainability
criteria for assessing nanotechnology applicability in industrial
wastewater treatment: current status and future outlook,
Environ. Int., 125 (2019) 261–276.
- G.K. Sarma, S.S. Gupta, K.G. Bhattacharyya, Nanomaterials as
versatile adsorbents for heavy metal ions in water: a review,
Environ. Sci. Pollut. Res., 26 (2019) 6245–6278.
- I. Ali, New generation adsorbents for water treatment, Chem.
Rev., 112 (2012) 5073–5091.
- M. Khajeh, S. Laurent, K. Dastafkan, Nanoadsorbents: classification,
preparation, and applications (with emphasis on
aqueous media), Chem. Rev., 113 (2013) 7728–7768.
- D. Ren, J.A. Smith, Retention and transport of silver nanoparticles
in a ceramic porous medium used for point-of-use
water treatment, Environ. Sci. Technol., 47 (2013) 3825–3832.
- S. Wang, C.W. Ng, W. Wang, Q. Li, Z. Hao, Synergistic and
competitive adsorption of organic dyes on multiwalled carbon
nanotubes, Chem. Eng. J., 197 (2012) 34–40.
- S.D. Lakshmi, P.K. Avti, G. Hegde, Activated carbon nanoparticles
from biowaste as new generation antimicrobial agents:
a review, Nano-Struct. Nano-Objects, 16 (2018) 306–321.
- N. Bagheri, J. Abedi, Preparation of high surface area activated
carbon from corn by chemical activation using potassium
hydroxide, Chem. Eng. Res. Des., 89 (2009) 1059–1064.
- K.V. Gupta, D. Mohan, S. Sharma, M. Sharma, Removal of basic
dyes (rhodamine B and methylene blue) from aqueous solutions
using bagasse fly ash, Sep. Sci. Technol., 35 (2000) 2097–2113.
- S.M. Anisuzzaman, C.G. Joseph, Y.H. Taufiq-Yap, D. Krishnaiah,
V.V. Tay, Modification of commercial activated carbon for the
removal of 2,4-dichlorophenol from simulated wastewater,
J. King Saud Univ. Sci., 27 (2015) 318–330.
- O.A. Habeeb, K. Ramesh, G.A.M. Ali, Low-cost and eco-friendly
activated carbon from modified palm Shell for hydrogen sulfide
removal from wastewater: adsorption and kinetic studies,
Desal. Water Treat., 84 (2017) 205–214
- O.A. Habeeb, R. Kanthasamy1, G.A.M. Ali, R.M.Yunus,
Experimental design technique on removal of hydrogen sulfide
using CaO-eggshells dispersed onto palm kernel shell activated
carbon: experiment, optimization, equilibrium and kinetic
studies, J. Wuhan Univ.Technol.-Mater. Sci. Ed., 32 (2017)
305–320.
- M. Bahgat, A. Farghali, W. El Rouby, M. Khedr, Synthesis and
modification of multi-walled carbon nano-tubes (MWCNTs) for
water treatment applications, J. Anal. Appl. Pyrolysis, 92 (2011)
307–313.
- R. Das, S.B.A. Hamid, E.M. Ali, A.F. Ismail, M.S.M. Annuar,
S. Ramakrishna, Multifunctional carbon nanotubes in water
treatment: the present, past and future, Desalination, 354 (2014)
160–179.
- K. Yang, B.S. Xing, Adsorption of organic compounds by
carbon nanomaterials in aqueous phase: Polanyi theory and its
application, Chem. Rev., 110 (2010) 5989–6008.
- X. Wang, J. Lu, B. Xing, Sorption of organic contaminants by
carbon nanotubes: influence of X adsorbed organic matter,
Environ. Sci. Technol., 42 (2008) 3207–3212.
- M. Rajabi, B. Mirza, K. Mahanpoor, M. Mirjalili, F. Najafi,
O. Moradi, H. Sadegh, R. Shahryari-Ghoshekandi, M. Asif,
I. Tyagi, Adsorption of malachite green from aqueous
solution by carboxylate group functionalized multi-walled
carbon nanotubes: determination of equilibrium and kinetics
parameters, J. Ind. Eng. Chem., 34 (2016) 130–138.
- V.K. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh,
R. Shahryari-Ghoshekandi, A.S.H. Makhlouf, M. Goodarzi,
A. Garshasbi, Study on the removal of heavy metal ions from
industry waste by carbon nanotubes: effect of the surface
modification: a review, Crit. Rev. Env. Sci. Technol., 46 (2016)
93–118.
- H. Sadegh, G.A.M. Ali, H.J. Nia, Z. Mahmoodi, Nanomaterial
Surface Modifications for Enhancement of the Pollutant
Adsorption from Wastewater, R. Nazir, Ed., Nanotechnology
Applications in Environmental Engineering, IGI Global,
Hershey, 2019, pp. 143–170.
- E. Roumeli, D.G. Papageorgiou, V. Tsanaktsis, Z. Terzopoulou,
K. Chrissafis, A. Avgeropoulos, D.N. Bikiaris, Amino-functionalized
multiwalled carbon nanotubes lead to successful
ring-opening polymerization of poly(ε-caprolactone): enhanced
interfacial bonding and optimized mechanical properties, ACS
Appl. Mater. Interfaces, 7 (2015) 11683–11694.
- C.L. Ngo, Q.T. Le, T.T. Ngo, D.N. Nguyen, M.T. Vu, Surface
modification and functionalization of carbon nanotube with
some organic compounds, Adv. Nat. Sci.: Nanosci. Nanotechnol.,
4 (2013) 035017–035022.
- G.A.M. Ali, E.Y.L. Teo, E.A.A. Aboelazm, H. Sadegh, A.O.H.
Memar, R. Shahryari-Ghoshekandi, K.F. Chong, Capacitive
performance of cysteamine functionalized carbon nanotubes,
Mater. Chem. Phys., 197 (2017) 100–104.
- J.M. Ngoy, S.E. Iyuke, W.E. Neuse, C.S. Yah, Covalent
functionalization for multi-walled carbon nanotube (f-WCNT)-
folic acid bound bioconjugate, J. Appl. Sci., 11 (2011) 2700–2711.
- K.T. Kim, W.H. Jo, Noncovalent functionalization of multiwalled
carbon nanotubes using graft copolymer with naphthalene
and its application as a reinforcing filler for poly(styrene-coacrylonitrile),
J. Polym. Sci., Part A: Polym. Chem., 48 (2010)
4184–4191.
- H. Sadegh, G.A.M. Ali, A.S.H. Makhlouf, K.F. Chong,
N.S. Alharbi, S. Agarwal, V.K. Gupta, MWCNTs-Fe3O4 nanocomposite
for Hg(II) high adsorption efficiency, J. Mol. Liq.,
258 (2018) 345–353.
- C.L. Chiang, C.C. Wang, C.Y. Chen, Functionalization of
MWCNT by plasma treatment and use as additives for nonvacuum
CuIn(S, Se)2 nanoparticle deposition solar cells,
J. Taiwan Inst. Chem. Eng., 80 (2017) 970–977.
- C. Zhang, F. Zhu, Z. Wang, L. Meng, Y. Liu, Amino
functionalization of multiwalled carbon nanotubes by gamma
ray irradiation and its epoxy composites, Polym. Compos.,
33 (2012) 267–274.
- J.Y. Yook, J. Jun, S. Kwak, Amino functionalization of carbon
nanotube surfaces with NH3 plasa treatment, Appl. Surf. Sci.,
256 (2010) 6941–6944.
- S. Mallakpour, A. Zadehnazari, Effect of amino acidfunctionalized
multi-walled carbon nanotubes on the properties
of dopamine-based poly (amide-imide) composites: an
experimental study, Bull. Mater. Sci., 37 (2014) 1065–1077.
- A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with
carbon nanotubes, Sep. Purif. Technol., 58 (2007) 49–52.
- B. Pan, D.H. Lin, H. Mashayekhi, B.S. Xing, Adsorption and
hysteresis of bisphenol A and 17 alpha-ethinyl estradiol
on carbon nanomaterials, Environ. Sci. Technol., 42 (2008)
5480–5485.
- L.L. Ji, W. Chen, L. Duan, D.Q. Zhu, Mechanisms for strong
adsorption of tetracycline to carbon nanotubes: a comparative
study using activated carbon and graphite as adsorbents,
Environ. Sci. Technol., 43 (2009) 2322–2327.
- D.H. Lin, B.S. Xing, Adsorption of phenolic compounds by
carbon nanotubes: role of aromaticity and substitution of
hydroxyl groups, Environ. Sci. Technol., 42 (2008) 7254–7259.
- Y. Yao, H. Bing, X. Feifei, C. Xiaofeng, Equilibrium and kinetic
studies of methyl orange adsorption on multiwalled carbon
nanotubes, Chem. Eng. J., 170 (2011) 82–89.
- S. Chatterjee, M.W. Lee, S.H. Woo, Adsorption of Congo
red by chitosan hydrogel beads impregnated with carbon
nanotubes, Bioresour. Technol., 101 (2010) 1800–1806.
- E. Bazrafshan, F.K. Mostafapour, A.R. Hosseini, A.K. Raksh,
A.H. Mahvi, Decolorisation of reactive red 120 dye by using
single-walled carbon nanotubes in aqueous solutions, J. Chem.,
2013 (2013) 8 pages, http://dx.doi.org/10.1155/2013/938374.
- C.H. Wu, Adsorption of reactive dye onto carbon nanotubes:
equilibrium, kinetics and thermodynamics, J. Hazard. Mater.,
144 (2007) 93–100.
- H. Hyung, J.H. Kim, Natural organic matter (NOM) adsorption
to multi-walled carbon nanotubes: effect of NOM characteristics
and water quality parameters, Environ. Sci. Technol., 42 (2008)
4416–4421.
- C. Lu, Y.L. Chung, K-F. Chang, Adsorption of trihalomethanes
from water with carbon nanotubes, Water Res., 39 (2005)
1183–1189.
- G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from
aqueous solution by carbon nanotubes: a review, Sep. Purif.
Technol., 58 (2007) 224–231.
- Y.H. Li, J. Ding, Z.K. Luan, Z.C. Di, Y.F. Zhu, C.L. Xu, D.H.
Wu, B.Q. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+
ions from aqueous solutions by multiwalled carbon nanotubes,
Carbon, 41 (2003) 2787–2792.
- Y.H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B.
Wei, Lead adsorption on carbon nanotubes, Chem. Phys. Lett.,
357 (2002) 263–266.
- K. Anitha, S. Namsani, J.K. Singh, Removal of heavy metal
ions using a functionalized single-walled carbon nanotube:
a molecular dynamics study, J. Phys. Chem. A, 119 (2015)
8349–8358.
- C. Lu, C. Liu, Removal of nickel(II) from aqueous solution by
carbon nanotubes, J. Chem. Technol. Biotechnol., 81 (2006)
1932–1940.
- C. Lu, H. Chiu, Adsorption of zinc(II) from water with purified
carbon nanotubes, Chem. Eng. Sci., 61 (2006) 1138–1145.
- V. Gupta, S. Agarwal, T.A. Saleh, Chromium removal by
combining the magnetic properties of iron oxide with adsorption
properties of carbon nanotubes, Water Res., 45 (2011)
2207–2212.
- Y.H. Li, Z.C. Di, J. Ding, D.H. Wu, Z.K. Luan, Y.Q. Zhu,
Adsorption thermodynamic, kinetic and desorption studies
of Pb2+ on carbon nanotubes, Water Res., 39 (2005) 605–609.
- C. Lu, H. Chiu, H. Bai, Comparisons of adsorbent cost for the
removal of zinc (II) from aqueous solution by carbon nanotubes
and activated carbon, J. Nanosci. Nanotechnol., 7 (2007)
1647–1652.
- D. Cohen-Tanugi, R.K. McGovern, S.H. Dave, J.H. Lienhard,
J.C. Grossman, Quantifying the potential of ultra-permeable
membranes for water desalination, Energy Environ. Sci.,
7 (2014) 1134–1141.
- M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Nanotechnology
in water and wastewater treatment. Graphene
– the nanomaterial for manufacturing of next generation
semipermeable membranes, Crit. Rev. Env. Sci. Technol., (2019)
doi:10.1080/10643389.2019.1664258.
- X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites,
Chem. Soc. Rev., 41 (2012) 666–686.
- B.M. Yoo, H.J. Shin, H.W. Yoon, H.B. Park, Graphene and
graphene oxide and their uses in barrier polymers, J. Appl.
Polym. Sci., 131 (2014) 39628.
- C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace,
A. Bhatnagar, Role of nanomaterials in water treatment
applications: a review, Chem. Eng. J., 306 (2016) 1116–1137.
- R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann,
A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions
from aqueous solutions using graphene oxide, Dalton Trans.,
42 (2013) 5682–5689.
- H. Wang, X.Z. Yuan, Y. Wu, H.J. Huang, G.M. Zeng, Y. Liu,
X.L. Wang, N.B. Lin, Y. Qi, Adsorption characteristics and
behaviors of graphene oxide for Zn(II) removal from aqueous
solution, Appl. Surf. Sci., 279 (2013) 432–440.
- C.J. Madadrang, H.Y. Kim, G.H. Gao, N. Wang, J. Zhu, H. Feng,
M. Gorring, M.L. Kasner, S.F. Hou, Adsorption behavior of
EDTA-graphene oxide for Pb (II) removal, ACS Appl. Mater.
Interfaces, 4 (2012) 1186–1193.
- Z.-H. Huang, X. Zheng, W. Lv, M. Wang, Q.-H. Yang, F. Kang,
Adsorption of lead(II) ions from aqueous solution on lowtemperature
exfoliated graphene nanosheets, Langmuir,
27 (2011) 7558–7562.
- S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar,
A.K. Sood, Graphene oxide–MnFe2O4 magnetic nanohybrids
for efficient removal of lead and arsenic from water, ACS Appl.
Mater. Interfaces, 6 (2014) 17426–17436.
- Y.-C, Lee, J.-W, Yang, Self-assembled flower-like TiO2 on
exfoliated graphite oxide for heavy metal removal, J. Ind. Eng.
Chem., 18 (2012) 1178–1185.
- L. Xu, J. Wang, The application of graphene-based materials
for the removal of heavy metals and radionuclides from
water and wastewater, Crit. Rev. Env. Sci. Technol., 47 (2017)
1042–1105.
- J. Li, S. Zhang, C. Chen, G. Zhao, X. Yang, J. Li, X. Wang,
Removal of Cu(II) and fulvic acid by graphene oxide
nanosheets decorated with Fe3O4 nanoparticles, ACS Appl.
Mater. Interfaces, 4 (2012) 4991–5000.
- J. Hur, J. Shin, J. Yoo, Y.-S. Seo, Competitive adsorption of
metals onto magnetic graphene oxide: comparison with other
carbonaceous adsorbents, Sci. World J., 2015 (2015) 11 pages,
https://doi.org/10.1155/2015/836287.
- D. Nandi, T. Basu, S. Debnath, A.K. Ghosh, A. De, U.C. Ghosh,
Mechanistic insight for the sorption of Cd(II) and Cu(II)
from aqueous solution on magnetic mn-doped Fe(III) oxide
nanoparticle implanted graphene, J. Chem. Eng. Data, 58 (2013)
2809–2818.
- Y. Wang, S. Liang, B. Chen, F. Guo, S. Yu, Y. Tang, Synergistic
removal of Pb(II), Cd(II) and humic acid by Fe3O4@mesoporous
silica–graphene oxide composites, PLoS One, 8 (2013) e65634.
- L. Hao, H. Song, L. Zhang, X. Wan, Y. Tang, Y. Lv, SiO2/graphene composite for highly selective adsorption of Pb(II)
ion, J. Colloid Interface Sci., 369 (2012) 381–387.
- S.P.Lee, G.A.M. Ali, H. Algarni, K.F. Chong, Flake sizedependent
adsorption of graphene oxide aerogel, J. Mol. Liq.,
277 (2019) 175–180.
- X. Li, J.J. Lenhart, H.W. Walker, Aggregation kinetics and
dissolution of coated silver nanoparticles, Langmuir, 28 (2011)
1095–1104.
- S. Vasudevan, J. Lakshmi, The adsorption of phosphate
by graphene from aqueous solution, RSC Adv., 2 (2012)
5234–5242.
- S. Zhang, Y. Shao, J. Liu, I.A. Aksay, Y. Lin, Graphenepolypyrrole
nanocomposite as a highly efficient and low cost
electrically switched ion exchange for removing ClO₄– from
wastewater, ACS Appl. Mater. Interfaces, 3 (2011) 3633–3637.
- T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite
oxide as a novel adsorbent for humic acid removal from
aqueous solution, J. Colloid Interface Sci., 333 (2009) 114–119.
- Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su,
Adsorption and removal of tetracycline antibiotics from
aqueous solution by graphene oxide, J. Colloid Interface Sci.,
368 (2012) 540–546.
- F. Liu, S. Chung, G. Oh, T.S. Seo, Three-dimensional graphene
oxide nanostructure for fast and efficient water-soluble dye
removal, ACS Appl. Mater. Interfaces, 4 (2012) 922–927.
- L. Ai, J. Jiang, Removal of methylene blue from aqueous
solution with self-assembled cylindrical graphene–carbon
nanotube hybrid, Chem. Eng. J., 192 (2012) 156–163.
- X. Zhang, C. Cheng, J. Zhao, L. Ma, S. Sun, C. Zhao,
Polyethersulfone enwrapped graphene oxide porous particles
for water treatment, Chem. Eng. J., 215 (2013) 72–81.
- G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng,
C. Shao, J. Wang, A facile chemical method to produce
superparamagnetic graphene oxide–Fe3O4 hybrid composite
and its application in the removal of dyes from aqueous
solution, J. Mater. Chem., 22 (2012) 1033–1039.
- X. Wang, H. Tian, Y. Yang, H. Wang, S. Wang, W. Zheng, Y. Liu,
Reduced graphene oxide/CdS for efficiently photocatalystic
degradation of methylene blue, J. Alloys Compd., 524 (2012)
5–12.
- S. Bai, X. Shen, X. Zhong, Y. Liu, G. Zhu, X. Xu, K. Chen, Onepot
solvothermal preparation of magnetic reduced graphene
oxideferrite hybrids for organic dye removal, Carbon, 50
(2012) 2337–2346.
- P. Bradder, S.K. Ling, S. Wang, S. Liu, Dye adsorption
on layered graphite oxide, J. Chem. Eng. Data, 56 (2010)
138–141.
- M. Rajabi, K. Mahanpoor, O. Moradi, Removal of dye
molecules from aqueous solution by carbon nanotubes and
carbon nanotube functional groups: critical review, RSC Adv.,
7 (2017) 47083–47090.
- X. Shi, W. Ruan, J. Hu, M. Fan, R. Cao, X. Wei, Optimizing
the removal of rhodamine B in aqueous solutions by reduced
graphene oxide-supported nanoscale zerovalent iron (NZVI/
RGO) using an artificial neural network-genetic algorithm
(ANN-GA), Nanomaterials, 7 (2017) 134.
- S.M.S. Arabi, R.S. Lalehloo, M.R.T.B. Olyai, G.A.M. Ali,
H. Sadegh, Removal of Congo Red azo dye from aqueous
solution by ZnO nanoparticles loaded on multiwall carbon
nanotubes, Physica E., 106 (2019) 150–155.
- V.K. Gupta, S. Agarwal, H. Sadegh, G.A.M. Ali, A.K. Bharti,
A.S.H. Makhlouf, Facile route synthesis of novel graphene
oxide-β-cyclodextrin nanocomposite and its application as
adsorbent for removal of toxic bisphenol A from the aqueous
phase, J. Mol. Liq., 237 (2017) 466–472.
- J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of
ciprofloxacin from water by porous graphene hydrogel, Sci.
Rep., 5 (2015) 13578.
- F. Yu, J. Ma, D. Bi, Enhanced adsorptive removal of selected
pharmaceutical antibiotics from aqueous solution by activated
graphene, Environ. Sci. Pollut. Res. Int., 22 (2015) 4715–4724.
- H. Chen, B. Gao, H. Li, Removal of sulfamethoxazole and
ciprofloxacin from aqueous solutions by graphene oxide,
J. Hazard. Mater., 282 (2015) 201–207.
- L. Zhao, F. Xue, B. Yu, J. Xie, X. Zhang, R. Wu, R. Wang,
Z. Hu, S.-T. Yang, J. Luo, TiO2–graphene sponge for the
removal of tetracycline, J. Nanopart. Res., 17 (2015) 16.
- E.E. Ghadim, F. Manouchehri, G. Soleimani, H. Hosseini,
S. Kimiagar, S. Nafisi, Adsorption properties of tetracycline
onto graphene oxide: equilibrium, kinetic and thermodynamic
studies, PLoS One, 8 (2013) e79254.
- Y. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal
from environmental waters by graphene oxide functionalized
magnetic particles, Chem. Eng. J., 225 (2013) 679–685.
- A. Kassem, G.M. Ayoub, L.Malaeb, Antibacterial activity of
chitosan nano-composites and carbon nanotubes: a review,
Sci. Total Environ., 668 (2019) 566–576.
- J. Fabrega, S.N. Luoma, C.R. Tyler, T.S. Galloway, J.R. Lead,
Silver nanoparticles: behaviour and effects in the aquatic
environment, Environ. Int., 37 (2011) 517–531.
- M.C. Daniel, D. Astruc, Gold nanoparticles: assembly,
supramolecular chemistry, quantum-size-related
properties, and applications toward biology, catalysis, and
nanotechnology, Chem. Rev., 104 (2004) 293–346.
- L. Feng, M. Cao, X. Ma, Y. Zhu, C. Hu, Superparamagnetic
high-surface-area Fe3O4 nanoparticles as adsorbents for
arsenic removal, J. Hazard. Mater., 217–218 (2012) 439–446.
- K. Gupta, S. Bhattacharya, D. Chattopadhyay, A. Mukhopadhyay,
H. Biswas, J. Dutta, N.R. Ray, U.C. Ghosh, Ceria
associated manganese oxide nanoparticles: synthesis,
characterization and arsenic(V) sorption behavior, Chem.
Eng. J., 172 (2011) 219–229.
- T. Luo, J. Cui, S. Hu, Y. Huang, C. Jing, Arsenic removal
and recovery from copper smelting wastewater using TiO2,
Environ. Sci. Technol., 44 (2010) 9094–9098.
- C. Gao, W. Zhang, H. Li, L. Lang, Z. Xu, Controllable
fabrication of mesoporous MgO with various morphologies
and their absorption performance for toxic pollutants in
water, Cryst. Growth Des., 8 (2008) 3785–3790.
- A. Goswamia, P.K. Raul, M.K. Purkait, Arsenic adsorption
using copper (II) oxide nanoparticles, Chem. Eng. Res. Des.,
90 (2012) 1387–1396.
- C.Y. Cao, Z.M. Cui, C.Q. Chen, W.G. Song, W. Cai, Ceria
hollow nanospheres produced by a template-free microwaveassisted
hydrothermal method for heavy metal ion removal
and catalysis, J. Phys. Chem. C, 114 (2010) 9865–9870.
- M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy
metal removal from water/wastewater by nanosized metal
oxides: a review, J. Hazard. Mater., 211–212 (2012) 317–331.
- P. Lakshmipathiraj, B. Narasimhan, S. Prabhakar, G.B. Raju,
Adsorption of arsenate on synthetic goethite from aqueous
solutions, J. Hazard. Mater., 136 (2006) 281–287.
- K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and
Ni to titanium dioxide nanoparticles: effect of particle size,
solid concentration, and exhaustion, Environ. Sci. Pollut. Res.
Int., 18 (2011) 386–395.
- R.-F. Yu, F.-H. Chi, W.-P. Cheng, J.-C. Chang, Application
of pH, ORP, and DO monitoring to evaluate chromium(VI)
removal from wastewater by the nanoscale zerovalent iron
(nZVI) process, Chem. Eng. J., 255 (2014) 568–576.
- Z. Wen, Y. Zhang, C. Dai, Removal of phosphate from aqueous
solution using nanoscale zerovalent iron (nZVI), Colloids
Surf., A, 457 (2014) 433–440.
- J. Fan, G. Yuo, J. Wang, M. Fan, Rapid decolorization of azo dye
methyl orange in aqueous solution by nanoscale zerovalent
iron particles, J. Hazard. Mater., 166 (2009) 904–910.
- I. Gehrke, A. Geiser, A. Somborn-Schulz, Innovations in
nanotechnology for water treatment, Nanotechnol. Sci. Appl.,
8 (2015) 1–17.
- M.H. Mashhadizadeh, M. Amoli-Diva, Atomic absorption
spectrometric determination of Al3+ and Cr3+ after preconcentration
and separation on 3-mercaptopropionic acid modified
silica coated-Fe3O4 nanoparticles, J. Anal. At. Spectrom.,
28 (2013) 251–258.
- M.A. Karimi, A. Hatefi-Mehrjardi, S.Z. Mohammadi,
A. Mohadesi, M. Mazloum-Ardakani, A.A. Kabir, M. Kazemipour,
N. Afsahi, Solid phase extraction of trace amounts
of silver (I) using dithizone-immobilized alumina-coated
magnetite nanoparticles prior to determination by flame
atomic absorption spectrometry, Int. J. Environ. Anal. Chem.,
92 (2012) 1325–1340.
- Q. Li, M.H.W. Lam, R.S.S. Wu, B. Jiang, Rapid magneticmediated
solid-phase extraction and pre-concentration of
selected endocrine disrupting chemicals in natural waters by
poly(divinylbenzene-co-methacrylic acid) coated Fe3O4 coreshell
magnetite microspheres for their liquid chromatographytandem
mass spectrometry determination, J. Chromatogr. A,
1217 (2010) 1219–1226.
- N. Pandey, S.K. Shukla, N.B. Singh, Water purification by
polymer nanocomposites: an overview, Nanocomposites,
3 (2017) 47–66.
- M. Runowski, Nanotechnology – nanomaterials, nanoparticles
and multifunctional nanostructures core/coating type,
Chemik, 68 (2014) 766–775 (in Polish).
- T. Tosco, P.M. Papini, C.C. Viggi, R. Sethi, Nanoscale
zerovalent iron particles for groundwater remediation: a
review, J. Cleaner Prod., 77 (2014) 10–21.
- P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao,
C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide
nanomaterials in wastewater treatment: a review, Sci. Total
Environ., 424 (2012) 1–10.
- S. Dubey, S. Banerjee, S.N. Upadhyay, Y.C. Sharma, Application
of common nano-materials for removal of selected metallic
species from water and wastewaters: a critical review, J. Mol.
Liq., 240 (2017) 656–677.
- R.A. Crane, M. Dickinson, I.C. Popescu, T.B. Scott, Magnetite
and zero-valent iron nanoparticles for the remediation of
uranium contaminated environmental water, Water Res.,
45 (2011) 2931–2942.
- S.L. Li, W. Wang, W.L. Yan, W.X. Zhang, Nanoscale zerovalent
iron (nZVI) for the treatment of concentrated Cu(II)
wastewater: a field demonstration, Environ. Sci. Processes
Impacts, 16 (2014) 524–533.
- M.A.V. Ramos, W. Yan, X.Q. Li, B.E. Koel, W.X. Zhang,
Simultaneous oxidation and reduction of arsenic by zerovalent
iron nanoparticles: understanding the significance
of the core‐shell structure, J. Phys. Chem. C, 113 (2009)
14591–14594.
- A. Ryu, S.-W. Jeong, A. Jang, H. Choi, Reduction of highly
concentrated nitrate using nanoscale zero-valent iron: effects
of aggregation and catalyst on reactivity, Appl. Catal., B,
105 (2011) 128–135.
- Z. Fang, J. Chen, X. Qiu, X. Qiu, W. Cheng, L. Zhu, Effective
removal of antibiotic metronidazole from water by nanoscale
zero-valent iron particles, Desalination, 268 (2011) 60–67.
- N. Chauhan, S. Gupta, N. Singh, S. Singh, S.S. Islam, K.N.
Sood, R. Pasricha, Aligned nanogold assisted one step
sensing and removal of heavy metal ions, J. Colloid Interface
Sci., 363 (2011) 42–50.
- Y.F. Lee, F.H. Nan, M.J. Chen, H.Y. Wu, C.W. Ho, Y.Y. Chen,
C.C. Huang, Detection and removal of mercury and lead
ions by using gold nanoparticle-based gel membrane, Anal.
Methods, 4 (2012) 1709–1717.
- B. Nowack, H.F. Krug, M. Height, 120 y of nanosilver history:
implications for policy makers, Environ. Sci. Technol., 45 (2011)
1177–1183.
- C. Zhang, Z. Hu, B. Deng, Silver nanoparticles in aquatic
environments: physiochemical behavior and antimicrobial
mechanisms, Water Res., 88 (2016) 403–427.
- R.S. Kalhapure, S.J. Sonawane, D.R. Sikwal, M. Jadhav,
S. Rambharose, C. Mocktar, T. Govender, Solid lipid nanoparticles
of clotrimazole silver complex: an efficient nano
antibacterial against Staphylococcus aureus and MRSA,
Colloids Surf., B, 136 (2015) 651–658.
- B. Borrego, G. Lorenzo, J.D. Mota-Morales, H. Almanza-
Reyes, F. Mateos, E. López-Gil, N. de la Losa, V.A. Burmistrov,
A.N. Pestryakov, A. Brun, Potential application of silver
nanoparticles to control the infectivity of Rift Valley fever
virus in vitro and in vivo, Nanomed. Nanotechnol. Biol. Med.,
12 (2016) 1185–1192.
- I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial
agent: a case study on E. coli as a model for
Gram-negative bacteria, J. Colloid Interface Sci., 275 (2004)
177–182.
- D.V. Quang, P.B. Sarawade, S.J. Jeon, S.H. Kim, J.-K. Kim,
Y.G. Chai, H.T. Kim, Effective water disinfection using
silver nanoparticle containing silica beads, Appl. Surf. Sci.,
266 (2013) 280–287.
- V. Bokare, J.-L. Jung, Y.-Y. Chang, Y.-S. Chang, Reductive
dechlorination of octachlorodibenzo-p-dioxin by nanosized
zerovalent zinc: modelling of rate kinetics and congener
profile, J. Hazard. Mater., 250 (2013) 397–402.
- P.G. Tratnyek, A.J. Salter, J.T. Nurmi, V. Sarathy, Environmental
Applications of Zerovalent Metals: Iron vs. Zinc, In: Nanoscale
Materials in Chemistry: Environmental Applications, ACS
Publications, Washington D.C., USA, 2010, pp. 165–178.
- P. Trivedi, L. Axe, Modeling Cd and Zn sorption to hydrous
metal oxides, Environ. Sci. Technol., 34 (2000) 2215–2223.
- S. Yean, L. Cong, C.T. Yavuz, J.T. Mayo, W.W. Yu, A.T. Kan,
V.L. Colvin, M.B. Tomson, Effect of magnetite particle size on
adsorption and desorption of arsenite and arsenate, J. Mater.
Res., 20 (2005) 3255–3264.
- Y.C. Sharma, V. Srivastava, V.K. Singh, S.N. Kaul, C.H.Weng,
Nano-adsorbents for the removal of metallic pollutants from
water and wastewater, Environ. Technol., 30 (2009) 583–609.
- K.D. Hristovski, H. Nguyen, P.K. Westerhoff, Removal of
arsenate and 17-ethinyl estradiol (EE2) by iron (hydr)oxide
modified activated carbon fibers, J. Environ. Sci. Health. Part
A Toxic/Hazard. Subst. Environ. Eng., 44 (2009) 354–361.
- J. Hu, G.H. Chen, I.M.C. Lo, Selective removal of heavy metals
from industrial wastewater using maghemite nanoparticle:
performance and mechanisms, J. Environ. Eng.-ASCE, 132
(2006) 709–715.
- M. Mohapatra, K. Rout, S.K. Gupta, P. Singh, S. Anand,
B.K. Mishra, Facile synthesis of additive-assisted nano
goethite powder and its application for fluoride remediation,
J. Nanopart. Res., 12 (2009) 681–686.
- Y.H. Chen, F.A. Li, Kinetic study on removal of copper(II)
using goethite and hematite nano-photocatalysts, J. Colloid
Interface Sci., 347 (2010) 277–281.
- H.J. Shipley, K.E. Engates, V.A. Grover, Removal of Pb(II),
Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect
of sorbent concentration, pH, temperature, and exhaustion,
Environ. Sci. Pollut. Res. Int., 20 (2013) 1727–1736.
- J. Hu, I. Lo, G. Chen, Removal of Cr (VI) by magnetite, Water
Sci. Technol., 50 (2004) 139–146.
- S.-Y. Mak, D.-H. Chen, Fast adsorption of methylene blue on
polyacrylic acid-bound iron oxide magnetic nanoparticles,
Dyes Pigm., 61 (2004) 93–98.
- R. Akhbarizadeh, M.R. Shayesterfar, E. Darezereshki,
Competitive removal of metals from wastewater by maghemite
nanoparticles: a comparison between simulated wastewater
and AMD, Mine Water Environ., 33 (2014) 89–96.
- K.L. Mercer, J.E. Tobiason, Removal of arsenic from high
ionic strength solutions: effects of ionic strength, pH, and
preformed vs. in situ formed HFO, Environ. Sci. Technol.,
42 (2008) 3797–3802.
- S.A. Klein, B.M. Pawlik, The removal of arsenic from water
using natural iron oxide minerals, J. Cleaner Prod., 29–30
(2012) 208–213.
- F. Ge, M.-M. Li, H. Ye, B.-X. Zhao, Effective removal of heavy
metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by
polymer-modified magnetic nanoparticles, J. Hazard. Mater.,
211 (2012) 366–372.
- M. Palimi, M. Rostami, M. Mahdavian, B. Ramezanzadeh,
Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane
(APTMS): an attempt to investigate
surface treatment on surface chemistry and mechanical
properties of polyurethane/Fe2O3 nanocomposites, Appl. Surf.
Sci., 320 (2014) 60–72.
- I. Tyagi, V. Gupta, H. Sadegh, R. Ghoshekandi, A.S.H.
Makhlouf, Nanoparticles as adsorbent; a positive approach
for removal of noxious metal ions: a review, Sci. Technol. Dev.,
34 (2017) 95–214.
- R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Water
purification from metal ions using carbon nanoparticleconjugated
polymer nanocomposites, Water Res., 44 (2010)
1927–1933.
- Y. Pang, G. Zeng, L. Tang, Y. Zhang, Y. Liu, X. Lei, Z. Li,
J. Zhang, G. Xie, PEI grafted magnetic porous powder for
highly effective adsorption of heavy metal ions, Desalination,
281 (2011) 278–284.
- L. Cumbal, A.K. Sengupta, Arsenic removal using polymersupported
hydrated iron(III) oxide nanoparticles: role of
donnan membrane effect, Environ. Sci. Technol., 39 (2005)
6508–6515.
- K. Zargoosh, H. Abedini, A. Abdolmaleki, M.R. Molavian,
Effective removal of heavy metal ions from industrial wastes
using thiosalicylhydrazide-modified magnetic nanoparticles,
Ind. Eng. Chem. Res., 52 (2013) 14944–14954.
- L. Zhi, J. Liu, Y. Wang, W. Zhang, B. Wang, Z. Xu, Z. Yang,
X. Huo, G. Li, Multifunctional Fe3O4 nanoparticles for highly
sensitive detection and removal of Al(III) in aqueous solution,
Nanoscale, 5 (2013) 1552–1556.
- L. Zhang, T. Huang, M. Zhang, X. Guo, Z. Yuan, Studies on the
capability and behavior of adsorption of thallium on nano-Al2O3, J. Hazard. Mater., 157 (2008) 352–357.
- A. Afkhami, M. Saber-Tehrani, H. Bagheri, Simultaneous
removal of heavy-metal ions in wastewater samples using
nano-alumina modified with 2,4-dinitrophenylhydrazine,
J. Hazard. Mater., 181 (2010) 836–844.
- S.S. Tripathy, J.L. Bersillon, K. Gopal, Adsorption of Cd2+
on hydrous manganese dioxide from aqueous solutions,
Desalination, 194 (2006) 11–21.
- S.P. Mishra, S.S. Dubey, D. Tiwari, Inorganic particulates in
removal of heavy metal toxic ions: IX. Rapid and efficient
removal of Hg (II) by hydrous manganese and tin oxides,
J. Colloid Interface Sci., 279 (2004) 61–67.
- H. Choi, E. Stathatos, D.D. Dionysiou, Sol-gel preparation
of mesoporous photocatalytic TiO2 films and TiO2/Al2O3
composite membranes for environmental applications, Appl.
Catal., B., 63 (2006) 60–67.
- S. Anandan, K. Kathiravan, V. Murugesan, Y. Ikuma,
Anionic (IO3–) non-metal doped TiO2 nanoparticles for the
photocatalytic degradation of hazardous pollutant in water,
Catal. Commun., 10 (2009) 1014–1019.
- A.D. Mani, P.M.K. Reddy, M. Srinivaas, P. Ghosal, N. Xanthopoulos,
C. Subrahmanyam, Facile synthesis of efficient
visible active C-doped TiO2 nanomaterials with high surface
area for the simultaneous removal of phenol and Cr(VI),
Mater. Res. Bull., 61 (2015) 391–399.
- R. George, N. Bahadur, N. Singh, R. Singh, A. Verma,
A.K. Shukla, Environmentally benign TiO2 nanomaterials for
removal of heavy metal ions with interfering ions present in
tap water, Mater. Today:. Proc., 3 (2016) 162–166.
- W. Liu, W. Sun, Y. Han, M. Ahmadb, J. Ni, Adsorption of
Cu(II) and Cd(II) on titanate nanomaterials synthesized via
hydrothermal method under different NaOH concentrations:
role of sodium content, Colloids Surf., A, 452 (2014) 138–147.
- Y. Chang, W. Han, A. Cai, H. Wang, Synthesis of lignosulfonateassisted
flower-like titanate nanostructures and their excellent
performance for heavy metal removal, Ceram. Int., 42 (2016)
8645–8649.
- H.Z. Zhang, J.F. Banfield, Understanding polymorphic phase
transformation behavior during growth of nanocrystalline
aggregates: insights from TiO2, J. Phys. Chem. B, 104 (2000)
3481–3487.
- J. Lonnen, S. Kilvington, S.C. Kehoe, F. Al-Touati, K.G.
McGuigan, Solar and photocatalytic disinfection of protozoan,
fungal and bacterial microbes in drinking water, Water Res.,
39 (2005) 877–883.
- R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai,
A review of solar and visible light active TiO2 photocatalysis
for treating bacteria, cyanotoxins and contaminants of emerging
concern, Mater. Sci. Semicond. Process., 42 (2016) 2–14.
- S. Gelover, P. Mondragón, A. Jiménez, Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst
for water decontamination, J. Photochem. Photobiol., A,
165 (2004) 241–246.
- M.A. Rahman, M. Mohd, Photocatalysed degradation of two
selected pesticide derivatives, dichlorvos and phosphamidon,
in aqueous suspensions of titanium dioxide, Desalination,
181 (2005) 161–172
- M. Flytzani-Stephanopoulos, M. Sakbodin, Z. Wang, Regenerative
adsorption and removal of H2S from hot fuel gas
streams by rare earth oxides, Science, 312 (2006) 1508–1510.
- X. Wang, W. Cai, Y. Lin, G. Wang, C. Liang, Mass production
of micro/nanostructured porous ZnO plates and their strong
structurally enhanced and selective adsorption performance
for environmental remediation, J. Mater. Chem., 20 (2010)
8582–8590.
- T. Sheela, Y.A. Nayaka, R. Viswanatha, S. Basavanna,
T.G. Venkatesha, Kinetics and thermodynamics studies on
the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous
solution using zinc oxide nanoparticles, Powder Technol., 217
(2012) 163–170.
- C. Gomez-Solís, J. Ballesteros, L. Torres-Martínez, I. Juárez-
Ramírez, L.D. Torres, M.E. Zarazua-Morin, S.W. Lee, Rapid
synthesis of ZnO nano-corncobs from Nital solution and
its application in the photodegradation of methyl orange,
J. Photochem. Photobiol., A, 298 (2015) 49–54.
- K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments
of zinc oxide based photocatalyst in water treatment
technology: a review, Water Res., 88 (2016) 428–448.
- K. Dai, L. Lu, C. Liang, J. Dai, G. Zhu, Z. Liu, Q. Liu, Y. Zhang,
Graphene oxide modified ZnO nanorods hybrid with high
reusable photocatalytic activity under UV-LED irradiation,
Mater. Chem. Phys., 143 (2014) 1410–1416.
- M.T. Uddin, Y. Nicolas, C.L. Olivier, T. Toupance, L. Servant,
M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured
SnO2–ZnO heterojunction photocatalysts showing
enhanced photocatalytic activity for the degradation of organic
dyes, Inorg. Chem., 51 (2012) 7764–7773.
- M. Samadi, A. Pourjavadi, A. Moshfegh, Role of CdO addition
on the growth and photocatalytic activity of electrospun
ZnO nanofibers: UV vs. visible light, Appl. Surf. Sci.,
298 (2014)147–154.
- H.R. Pant, C.H. Park, B. Pant, L.D. Tijing, H.Y. Kim, C.S. Kim,
Synthesis, characterization, and photocatalytic properties of
ZnO nano-flower containing TiO2 NPs, Ceram. Int., 38 (2012)
2943–2950.
- P.R. Grossl, D.L. Sparks, C.C. Ainsworth, Rapid kinetics
of Cu (II) adsorption/desorptionon goethite, Environ. Sci.
Technol., 28 (1994) 1422–1429.
- X. Wei, S. Bhojappa, L.S. Lin, R.C. Viadero, Performance of
Nano-magnetite for removal of selenium from aqueous
solutions, Environ. Eng. Sci., 29 (2012) 526–532.
- A.A. Babaei, Z. Baboli, N. Jaafarzadeh, G. Goudarzi,
M. Bahrami, M. Ahmadi, Synthesis, performance, and nonlinear
modeling of modified nano-sized magnetite for
removal of Cr (VI) from aqueous solutions, Desal. Water
Treat., 53 (2015) 768–777.
- Y. Liu, M. Chen, Y. Hao, Study on the adsorption of Cu (II)
by EDTA functionalized Fe3O4 magnetic nano particles, Chem.
Eng. J., 218 (2013) 46–54.
- J. Zhang, S. Zhai, S. Li, Z. Xiao, Y. Song, Q. An, G. Tian, Pb(II) removal of Fe3O4@SiO2–NH2 core – shell nanomaterials
prepared via a controllable sol – gel process, Chem. Eng. J.,
215–216 (2013) 461–471.
- H. Karami, Heavy metal removal from water by magnetite
nanorods, Chem. Eng. J., 219 (2013) 209–216.
- T. Nur, P. Loganathan, T.C. Nguyen, S. Vigneswaran, G. Singh,
J. Kandasamy, Batch and column adsorption and desorption
of fluoride using hydrous ferric oxide: solution chemistry and
modeling, Chem. Eng. J., 247 (2014) 93–102.
- Y.C. Sharma, V. Srivastava, A.K. Mukherjee, Synthesis and
application of nano-Al2O3 powder for the reclamation of
hexavalent chromium from aqueous solutions, J. Chem. Eng.
Data, 55 (2010) 2390–2398.
- V. Srivastava, C.H. Weng, V.K. Singh, Y.C. Sharma, Adsorption
of nickel ions from aqueous solutions by nano alumina:
kinetic, mass transfer, and equilibrium studies, J. Chem. Eng.
Data, 56 (2011) 1414–1422.
- A. Rahmani, H.Z. Mousavi, M. Fazli, Effect of nanostructure
alumina on adsorption of heavy metals, Desalination,
253 (2010) 94–100.
- A.M. Mahmoud, F.A. Ibrahim, S.A. Shaban, N.A. Youssef,
Adsorption of heavy metal ion from aqueous solution by
nickel oxide nano catalyst prepared by different methods,
Egypt. J. Pet., 24 (2015) 27–35.
- J. Mukherjee, J. Ramkumar, S. Chandramouleeswaran,
R. Shukla, A.K. Tyagi, Sorption characteristics of nano manganese
oxide: efficient sorbent for removal of metal ions from
aqueous streams, J. Radioanal. Nucl. Chem., 297 (2013) 49–57.
- H. Zhan, Y. Jiang, Q. Ma, Determination of adsorption
characteristics of metal oxide nanomaterials: application as
adsorbents, Anal. Lett., 47 (2014) 871–884.
- V.K. Gupta, R. Chandra, I. Tyagi, M. Verma, Removal of
hexavalent chromium ions using CuO nanoparticles for water
purification applications, J. Colloid Interface Sci., 478 (2016)
54–62.
- X. Zhang, J. Liu, S.J. Kell, X. Huang, J. Liu, Biomimetic
snowflakeshaped magnetic micro-/nanostructures for
highly efficient adsorption of heavy metal ions and organic
pollutants from aqueous solution, J. Mater. Chem. A, 2 (2014)
11759–11767.
- Y. Tu, C. You, C. Chang, Kinetics and thermodynamics of
adsorption for Cd on green manufactured nano-particles,
J. Hazard. Mater., 235–236 (2012) 116–122.
- J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk,
Experimental trends in polymer nanocomposites – a review,
Mater. Sci. Eng., A, 393 (2005) 1–11.
- X. Zhao, L. Lv, B.C. Pan, W.M. Zhang, S.J. Zhang, Q.X. Zhang,
Polymer-supported nanocomposites for environmental
application: a review, Chem. Eng. J., 170 (2011) 381–394.
- G. Lofrano, M. Carotenuto, G. Libralato, R.F. Domingos,
A. Markus, L. Dini, R.K. Gautam, D. Baldantoni, M. Rossi,
S.K. Sharma, M.C. Chattopadhyaya, M. Giugni, S. Meric,
Polymer functionalized nanocomposites for metals removal
from water and wastewater: an overview, Water Res., 92 (2016)
22–37.
- C.S.C. Chiew, H.K. Yeoh, P. Pasbakhsh, K. Krishnaiah,
P.E. Poh, B.T. Tey, E.S. Chan, Halloysite/algina H.K.te
nanocomposite beads: kinetics, equilibrium and mechanism
for lead adsorption, Appl. Clay Sci., 119 (2016) 301–310.
- U.Baig, R.A.K. Rao, A.A. Khan, M.M. Sanagi, M.A. Gondal,
Removal of carcinogenic hexavalent chromium from aqueous
solutions using newly synthesized and characterized polypyrrole-
titanium(IV)phosphate nanocornposite, Chem. Eng. J.,
280 (2015) 494–504.
- R. Bushra, M. Naushad, R. Adnan, Z.A. Alothman, M. Rafatullah,
Polyaniline supported nanocomposite cation exchanger:
synthesis, characterization and applications for the efficient
removal of Pb2+ ion from aqueous medium, J. Ind. Eng. Chem.,
21 (2015) 1112–1118.
- L. Chen, X. Zhao, B.C. Pan, W.X. Zhang, M. Hua, L. Lv, W.M.
Zhang, Preferable removal of phosphate from water using
hydrous zirconium oxide-based nanocomposite of high
stability, J. Hazard. Mater., 284 (2015) 35–42.
- Q.R. Zhang, Q. Du, M. Hua, T.F. Jiao, G.F. Mao, B.C. Pan,
Sorption enhancement of lead ions from water by surface
charged polystyrene-supported nano-zirconium oxide composites,
Environ. Sci. Technol., 47 (2013) 6536–6544.
- D. Wang, A critical review of cellulose-based nanomaterials
for water purification in industrial processes, Cellulose,
26 (2019) 687–701.
- E. Vunain, A.K. Mishra, B.B. Mamba, Dendrimers, mesoporous
silicas and chitosanbased nanosorbents for the removal of
heavy-metal ions: a review, Int. J. Biol. Macromol., 86 (2016)
570–586.
- K.Y. Foo, B.H. Hameed, Decontamination of textile wastewater
via TiO2/activated carbon composite materials, Adv.
Colloid Interface Sci., 159 (2010) 130–143.
- J.A. Arcibar-Orozco, M. Avalos-Borja, J.R. Rangel-Mendez,
Effect of phosphate on the particle size of ferric oxyhydroxides
anchored onto activated carbon: As(V) removal from water,
Environ. Sci. Technol., 46 (2012) 9577–9583.
- Y. Kikuchi, Q. Qian, M. Machida, H. Tatsumoto, Effect of
ZnO loading to activated carbon on Pb(II) adsorption from
aqueous solution, Carbon, 44 (2006) 195–202.
- P.Y. Furlan, M.E. Melcer, Removal of aromatic pollutant
surrogate from water by recyclable magnetite-activated
carbon nanocomposite: an experiment for general chemistry,
J. Chem. Educ., 91 (2014) 1966–1970.
- V.K.K. Upadhyayula, V. Gadhamshetty, Appreciating the role
of carbon nanotube composites in preventing biofouling and
promoting biofilms on material surfaces in environmental
engineering: a review, Biotechnol. Adv., 28 (2010) 802–816.
- M.R. Nabid, R. Sedghi, M. Behbahani, B. Arvan, M.M. Heravi,
H.A. Oskooie, Application of poly 1,8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an
efficient sorbent for trace determination of cadmium and lead
ions in water samples, J. Mol. Recognit., 27 (2014) 421–428.
- W. Konicki, I. Pelech, E. Mijowska, I. Jasinska, Adsorption of
anionic dye Direct Red 23 onto magnetic multi-walled carbon
nanotubes-Fe3C nanocomposite: kinetics, equilibrium and
thermodynamics, Chem. Eng. J., 210 (2012) 87–95.
- T.S. Mthombo, A.K. Mishra, S.B. Mishra, B.B. Mamba, The
adsorption behavior of Cu(II), Pb(II), and Co(II) of ethylene
vinyl acetate-clinoptilolite nanocomposites, J. Appl. Polym.
Sci., 121 (2011) 3414–3424.
- M. Khatamian, Z. Alaji, Efficient adsorption-photodegradation
of 4-nitrophenol in aqueous solution by using ZnO/HZSM-5
nanocomposites, Desalination, 286 (2012) 248–253.
- M.N. Chong, Z.Y. Tneu, P.E. Poh, B. Jin, R. Aryal, Synthesis,
characterisation and application of TiO2-zeolite nanocomposites
for the advanced treatment of industrial dye wastewater,
J. Taiwan Inst. Chem. Eng., 50 (2015) 288–296.
- X.F. Tan, Y.G. Liu, Y.L. Gu, Y. Xu, G.M. Zeng, X.J. Hu,
S.B. Liu, X. Wang, S.M. Liu, J. Li, Biochar-based nanocomposites
for the decontamination of wastewater: a review,
Bioresour. Technol., 212 (2016) 318–333.
- M. Zhang, B. Gao, S. Varnoosfaderani, A. Hebard, Y. Yao,
M. Inyang, Preparation and characterization of a novel
magnetic
biochar for arsenic removal, Bioresour. Technol.,
130 (2013) 457–462.
- M. Inyang, B. Gao, A. Zimmerman, M. Zhang, H. Chen,
Synthesis, characterization, and dye sorption ability of carbon
nanotube-biochar nanocomposites, Chem. Eng. J., 236 (2014)
39–46.
- M. Zhang, B. Gao, Y. Yao, Y.W. Xue, M. Inyang, Synthesis
of porous MgO-biochar nanocomposites for removal of
phosphate and nitrate from aqueous solutions, Chem. Eng. J.,
210 (2012) 26–32.
- E.I. Unuabonah, A. Taubert, Clay-polymer nanocomposites
(CPNs): adsorbents of the future for water treatment, Appl.
Clay Sci., 99 (2014) 83–92.
- J.E. Bruna, A. Penaloza, A. Guarda, F. Rodriguez, M.J. Galotto,
Development of MtCu2+/LDPE nanocomposites with antimicrobial
activity for potential use in food packaging, Appl.
Clay Sci., 58 (2012) 79–87.
- Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by
biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
- W. Plazinski, A. Plazinska, Equilibrium and Kinetic Modeling
of Adsorption at Solid/Solution Interfaces, In: A. Bhatnagar,
Ed., Application of Adsorbents for Water Pollution Control,
Bentham Science Publishers, 2012, pp. 32–80.
- C. Gerente, V.K.C. Lee, P. Le Cloirec, G. Mckay, Application
of chitosan for the removal of metals from wastewaters by
adsorption-mechanisms and models review, Crit. Rev. Env.
Sci. Technol., 37 (2007) 41–127.
- G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Adsorption of
monoazo dyes (Crocein Orange G and Procion Red MX5B)
from water using raw and acid-treated montmorillonite
K10: insight into kinetics, isotherm, and thermodynamic
parameters, Water Air Soil Pollut., 229 (2018) 312.
- A.M. Donia, A.A. Atia, F.I. Abouzayed, Preparation and
characterization of nano-magnetic cellulose with fast kinetic
properties towards the adsorption of some metal ions, Chem.
Eng. J., 191 (2012) 22–30.
- X. Zhou, H. Yi, X. Tang, H. Deng, H. Liu, Thermodynamics for
the adsorption of SO2, NO and CO2 from flue gas on activated
carbon fiber, Chem. Eng. J., 200–202 (2012) 399–404.
- S. Mandal, M.K. Sahu, R. Kishore, Adsorption studies of
arsenic (III) removal from water by zirconium polyacrylamide
hybrid, Water Resour. Ind., 4 (2013) 51–67.
- V. Sureshkumar, S.C.G.K. Danie, K. Ruckmani, M. Sivakumar,
Fabrication of chitosan—magnetite nanocomposite strip for
chromium removal, Appl. Nanosci., 6 (2016) 277–285.
- H. Jabeen, K.C. Kemp, V. Chandra, Synthesis of nano
zerovalent iron nanoparticles-graphene composite for the
treatment of lead contaminated water, Journal of Environ.
Manage., 130 (2013) 429–435.
- S.X. Dong, X.M. Dou, D. Mohan, C.U. Pittman Jr., J.M. Luo,
Synthesis of graphene oxide/schwertmannite nanocomposites
and their application in Sb(V) adsorption from water, Chem.
Eng. J., 270 (2015) 205–214.
- F. Fang, L.T. Kong, J.R. Huang, S.B. Wu, K.S. Zhang, X.L. Wang,
B. Sun, Z. Jin, J. Wang, X.J. Huang, J.H. Liu, Removal of cobalt
ions from aqueous solution by an amination graphene oxide
nanocomposite, J. Hazard. Mater., 270 (2014) 1–10.
- M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption
onto the graphene layer of carbonaceous materials in aqueous
solution, Carbon, 44 (2006) 2681–2688.
- Y.B. Sun, D.D. Shao, C.L. Chen, S.B. Yang, X.K. Wang, Highly
efficient enrichment of radionuclides on graphene oxide-supported
polyaniline, Environ. Sci. Technol., 47 (2013) 9904–9910.
- T. Yao, Y.P. Xiao, X.W. Wu, C.Y. Guo, Y.L. Zhao, X. Chen,
Adsorption of Eu(III) on sulfonated graphene oxide: combined
macroscopic and modeling techniques, J. Mol. Liq., 215 (2016)
443–448.
- R.M. Ashour, A.F. Abdel-Magied, A.A. Abdel-khalek, O.S.
Helaly, M.M. Ali, Preparation and characterization of magnetic
iron oxide nanoparticles functionalized by L-cysteine: adsorption
and desorption behavior for rare earth metal ions,
J. Environ. Chem. Eng., 4 (2016) 3114–3121.
- Y. Tan, M. Chen, Y. Hao, High efficient removal of Pb (II) by
amino-functionalized Fe3O4 magnetic nano particles, Chem.
Eng. J., 191 (2012) 104–111.
- A.S. Poursani, A. Nilchi, A.H. Hassani, M. Shariat, J. Nouri,
A novel method for synthesis of nano-γ-Al2O3: study of
adsorption behavior of chromium, nickel, cadmium and lead
ions, Int. J. Environ. Sci. Technol., 12 (2015) 2003–2014.
- J.S. Azizian, M. Bagheri, Enhanced adsorption of Cu2+ from
aqueous solution by Ag doped nano-structured ZnO, J. Mol.
Liq., 196 (2014) 198–203.
- I. Mobasherpour, E. Salahi, M. Ebrahimi, Removal of divalent
nickel cations from aqueous solution by multi-walled carbon
nanotubes: equilibrium and kinetic processes, Res. Chem.
Intermed., 38 (2012) 2205–2222.
- Y. Ren, N. Yan, Q. Wen, Z. Fan, T. Wei, M. Zhang, J. Ma,
Graphene/δ-MnO2 composite as adsorbent for the removal of
nickel ions from wastewater, Chem. Eng. J., 175 (2011) 1–7.
- L. Yang, Z. Li, G. Nie, Z. Zhang, X. Lu, C. Wang, Fabrication of
poly(o-phenylenediamine)/reduced graphene oxide composite
nanosheets via microwave heating and their effective
adsorption of lead ions, Appl. Surf. Sci., 307 (2014) 601–607.
- A. Sharma, B. Lee, Cd (II) removal and recovery enhancement
by using acrylamide—titanium anocomposite as an adsorbent,
Appl. Surf. Sci., 313 (2014) 624–632.
- W. Jung, B.H. Jeon, D.W. Cho, H.S. Roh, Y. Cho, S.J. Kim,
D.S. Lee, Sorptive removal of heavy metals with nano-sized
carbon immobilized alginate beads, J. Ind. Eng. Chem.,
26 (2015) 364–369.
- K. Xie, L. Jing, W. Zhao, Y. Zhang, Adsorption removal of
Cu2+ and Ni2+ from waste water using nano-cellulose hybrids
containing reactive polyhedral oligomeric silsesquioxanes,
J. Appl. Polym. Sci., 22 (2011) 2864–2868.
- S.B. Khan, K.A. Alamry, H.M. Marwani, A.M. Asiri,
M.M. Rahman, Synthesis and environmental applications
of cellulose/ZrO2 nanohybrid as a selective adsorbent for
nickel ion, Composites Part B, 50 (2013) 253–258.
- G.N. Kousalya, M.R. Gandhi, S. Meenakshi, Removal
of toxic Cr (VI) ions from aqueous solution using nanohydroxyapatite-based chitin and chitosan hybrid composites,
Adsorpt. Sci. Technol., 28 (2010) 49–64.
- A.F. El-Kafrawy, S.M. El-Saeed, R.K. Farag, H. Al-Aidy
El-Saied, M. El-Sayed Abdel-Raouf, Adsorbents based on
natural polymers for removal of some heavy metals from
aqueous solution, Egypt. J. Pet., 26 (2017) 23–32.
- L. Yang, X. Chu, F. Wang, Y. Li, L. Zhang, Investigation of
selective and effective recovery of noble metal osmium by
adsorption onto nano Al2O3 particles, New J. Chem., 38 (2014)
3250–3257.