References

  1. X. Tian, J. Sarkis, Y. Geng, Y. Qian, C. Gao, R. Bleischwitz, Y. Xu, Evolution of China’s water footprint and virtual water trade: a global trade assessment, Environ. Int., 121 (2018) 178–188.
  2. World Health Organization, Progress on drinking water and sanitation: 2012 update. UNICEF, WHO Geneva, (2012).
  3. S. Baruah, M. N. Khan, J. Dutta, Nanotechnology in water treatment. In: Lichtfouse E, Schwarzbaur J, Robert D (eds.) Pollutants in buildings, water and living organisms. Environ. Chem. for a sustainable world, Springer International Publishing, Switzerland, vol. 7 (2015) pp. 51–84.
  4. J. Nawrocki, Water Treatment. Chemical and Biological Processes, Wydawnictwo Naukowe PWN, Warszawa, Poland, 2010 (in Polish).
  5. M. Bodzek, Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Arch. Environ. Prot., 45 (2019) 4–19.
  6. L. Madhura, S. Singh, S. Kanchi, M. Sabela, K. Bisetty, Nanotechnology based water quality management for wastewater treatment, Environ. Chem. Lett., 17 (2018) 65–121.
  7. M. Bodzek, K. Konieczny, M. Rajca, Membranes in water and wastewater disinfection – review, Arch. Environ. Prot., 45 (2019) 3–18.
  8. Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3–4 (2016) 22–39.
  9. F. Lu, D. Astruc, Nanomaterials for removal of toxic elements from water, Coord. Chem. Rev., 356 (2018) 147–164.
  10. M. Kamali, K.M. Persson, M.E. Costa, I. Capela, Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: current status and future outlook, Environ. Int., 125 (2019) 261–276.
  11. G.K. Sarma, S.S. Gupta, K.G. Bhattacharyya, Nanomaterials as versatile adsorbents for heavy metal ions in water: a review, Environ. Sci. Pollut. Res., 26 (2019) 6245–6278.
  12. I. Ali, New generation adsorbents for water treatment, Chem. Rev., 112 (2012) 5073–5091.
  13. M. Khajeh, S. Laurent, K. Dastafkan, Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media), Chem. Rev., 113 (2013) 7728–7768.
  14. D. Ren, J.A. Smith, Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment, Environ. Sci. Technol., 47 (2013) 3825–3832.
  15. S. Wang, C.W. Ng, W. Wang, Q. Li, Z. Hao, Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes, Chem. Eng. J., 197 (2012) 34–40.
  16. S.D. Lakshmi, P.K. Avti, G. Hegde, Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: a review, Nano-Struct. Nano-Objects, 16 (2018) 306–321.
  17. N. Bagheri, J. Abedi, Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide, Chem. Eng. Res. Des., 89 (2009) 1059–1064.
  18. K.V. Gupta, D. Mohan, S. Sharma, M. Sharma, Removal of basic dyes (rhodamine B and methylene blue) from aqueous solutions using bagasse fly ash, Sep. Sci. Technol., 35 (2000) 2097–2113.
  19. S.M. Anisuzzaman, C.G. Joseph, Y.H. Taufiq-Yap, D. Krishnaiah, V.V. Tay, Modification of commercial activated carbon for the removal of 2,4-dichlorophenol from simulated wastewater, J. King Saud Univ. Sci., 27 (2015) 318–330.
  20. O.A. Habeeb, K. Ramesh, G.A.M. Ali, Low-cost and eco-friendly activated carbon from modified palm Shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies, Desal. Water Treat., 84 (2017) 205–214
  21. O.A. Habeeb, R. Kanthasamy1, G.A.M. Ali, R.M.Yunus, Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies, J. Wuhan Univ.Technol.-Mater. Sci. Ed., 32 (2017) 305–320.
  22. M. Bahgat, A. Farghali, W. El Rouby, M. Khedr, Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications, J. Anal. Appl. Pyrolysis, 92 (2011) 307–313.
  23. R. Das, S.B.A. Hamid, E.M. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna, Multifunctional carbon nanotubes in water treatment: the present, past and future, Desalination, 354 (2014) 160–179.
  24. K. Yang, B.S. Xing, Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application, Chem. Rev., 110 (2010) 5989–6008.
  25. X. Wang, J. Lu, B. Xing, Sorption of organic contaminants by carbon nanotubes: influence of X adsorbed organic matter, Environ. Sci. Technol., 42 (2008) 3207–3212.
  26. M. Rajabi, B. Mirza, K. Mahanpoor, M. Mirjalili, F. Najafi, O. Moradi, H. Sadegh, R. Shahryari-Ghoshekandi, M. Asif, I. Tyagi, Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: determination of equilibrium and kinetics parameters, J. Ind. Eng. Chem., 34 (2016) 130–138.
  27. V.K. Gupta, O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari-Ghoshekandi, A.S.H. Makhlouf, M. Goodarzi, A. Garshasbi, Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review, Crit. Rev. Env. Sci. Technol., 46 (2016) 93–118.
  28. H. Sadegh, G.A.M. Ali, H.J. Nia, Z. Mahmoodi, Nanomaterial Surface Modifications for Enhancement of the Pollutant Adsorption from Wastewater, R. Nazir, Ed., Nanotechnology Applications in Environmental Engineering, IGI Global, Hershey, 2019, pp. 143–170.
  29. E. Roumeli, D.G. Papageorgiou, V. Tsanaktsis, Z. Terzopoulou, K. Chrissafis, A. Avgeropoulos, D.N. Bikiaris, Amino-functionalized multiwalled carbon nanotubes lead to successful ring-opening polymerization of poly(ε-caprolactone): enhanced interfacial bonding and optimized mechanical properties, ACS Appl. Mater. Interfaces, 7 (2015) 11683–11694.
  30. C.L. Ngo, Q.T. Le, T.T. Ngo, D.N. Nguyen, M.T. Vu, Surface modification and functionalization of carbon nanotube with some organic compounds, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4 (2013) 035017–035022.
  31. G.A.M. Ali, E.Y.L. Teo, E.A.A. Aboelazm, H. Sadegh, A.O.H. Memar, R. Shahryari-Ghoshekandi, K.F. Chong, Capacitive performance of cysteamine functionalized carbon nanotubes, Mater. Chem. Phys., 197 (2017) 100–104.
  32. J.M. Ngoy, S.E. Iyuke, W.E. Neuse, C.S. Yah, Covalent functionalization for multi-walled carbon nanotube (f-WCNT)- folic acid bound bioconjugate, J. Appl. Sci., 11 (2011) 2700–2711.
  33. K.T. Kim, W.H. Jo, Noncovalent functionalization of multiwalled carbon nanotubes using graft copolymer with naphthalene and its application as a reinforcing filler for poly(styrene-coacrylonitrile), J. Polym. Sci., Part A: Polym. Chem., 48 (2010) 4184–4191.
  34. H. Sadegh, G.A.M. Ali, A.S.H. Makhlouf, K.F. Chong, N.S. Alharbi, S. Agarwal, V.K. Gupta, MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency, J. Mol. Liq., 258 (2018) 345–353.
  35. C.L. Chiang, C.C. Wang, C.Y. Chen, Functionalization of MWCNT by plasma treatment and use as additives for nonvacuum CuIn(S, Se)2 nanoparticle deposition solar cells, J. Taiwan Inst. Chem. Eng., 80 (2017) 970–977.
  36. C. Zhang, F. Zhu, Z. Wang, L. Meng, Y. Liu, Amino functionalization of multiwalled carbon nanotubes by gamma ray irradiation and its epoxy composites, Polym. Compos., 33 (2012) 267–274.
  37. J.Y. Yook, J. Jun, S. Kwak, Amino functionalization of carbon nanotube surfaces with NH3 plasa treatment, Appl. Surf. Sci., 256 (2010) 6941–6944.
  38. S. Mallakpour, A. Zadehnazari, Effect of amino acidfunctionalized multi-walled carbon nanotubes on the properties of dopamine-based poly (amide-imide) composites: an experimental study, Bull. Mater. Sci., 37 (2014) 1065–1077.
  39. A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes, Sep. Purif. Technol., 58 (2007) 49–52.
  40. B. Pan, D.H. Lin, H. Mashayekhi, B.S. Xing, Adsorption and hysteresis of bisphenol A and 17 alpha-ethinyl estradiol on carbon nanomaterials, Environ. Sci. Technol., 42 (2008) 5480–5485.
  41. L.L. Ji, W. Chen, L. Duan, D.Q. Zhu, Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents, Environ. Sci. Technol., 43 (2009) 2322–2327.
  42. D.H. Lin, B.S. Xing, Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups, Environ. Sci. Technol., 42 (2008) 7254–7259.
  43. Y. Yao, H. Bing, X. Feifei, C. Xiaofeng, Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes, Chem. Eng. J., 170 (2011) 82–89.
  44. S. Chatterjee, M.W. Lee, S.H. Woo, Adsorption of Congo red by chitosan hydrogel beads impregnated with carbon nanotubes, Bioresour. Technol., 101 (2010) 1800–1806.
  45. E. Bazrafshan, F.K. Mostafapour, A.R. Hosseini, A.K. Raksh, A.H. Mahvi, Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions, J. Chem., 2013 (2013) 8 pages, http://dx.doi.org/10.1155/2013/938374.
  46. C.H. Wu, Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 144 (2007) 93–100.
  47. H. Hyung, J.H. Kim, Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters, Environ. Sci. Technol., 42 (2008) 4416–4421.
  48. C. Lu, Y.L. Chung, K-F. Chang, Adsorption of trihalomethanes from water with carbon nanotubes, Water Res., 39 (2005) 1183–1189.
  49. G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif. Technol., 58 (2007) 224–231.
  50. Y.H. Li, J. Ding, Z.K. Luan, Z.C. Di, Y.F. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes, Carbon, 41 (2003) 2787–2792.
  51. Y.H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei, Lead adsorption on carbon nanotubes, Chem. Phys. Lett., 357 (2002) 263–266.
  52. K. Anitha, S. Namsani, J.K. Singh, Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study, J. Phys. Chem. A, 119 (2015) 8349–8358.
  53. C. Lu, C. Liu, Removal of nickel(II) from aqueous solution by carbon nanotubes, J. Chem. Technol. Biotechnol., 81 (2006) 1932–1940.
  54. C. Lu, H. Chiu, Adsorption of zinc(II) from water with purified carbon nanotubes, Chem. Eng. Sci., 61 (2006) 1138–1145.
  55. V. Gupta, S. Agarwal, T.A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Res., 45 (2011) 2207–2212.
  56. Y.H. Li, Z.C. Di, J. Ding, D.H. Wu, Z.K. Luan, Y.Q. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Water Res., 39 (2005) 605–609.
  57. C. Lu, H. Chiu, H. Bai, Comparisons of adsorbent cost for the removal of zinc (II) from aqueous solution by carbon nanotubes and activated carbon, J. Nanosci. Nanotechnol., 7 (2007) 1647–1652.
  58. D. Cohen-Tanugi, R.K. McGovern, S.H. Dave, J.H. Lienhard, J.C. Grossman, Quantifying the potential of ultra-permeable membranes for water desalination, Energy Environ. Sci., 7 (2014) 1134–1141.
  59. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for manufacturing of next generation semipermeable membranes, Crit. Rev. Env. Sci. Technol., (2019) doi:10.1080/10643389.2019.1664258.
  60. X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev., 41 (2012) 666–686.
  61. B.M. Yoo, H.J. Shin, H.W. Yoon, H.B. Park, Graphene and graphene oxide and their uses in barrier polymers, J. Appl. Polym. Sci., 131 (2014) 39628.
  62. C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, A. Bhatnagar, Role of nanomaterials in water treatment applications: a review, Chem. Eng. J., 306 (2016) 1116–1137.
  63. R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans., 42 (2013) 5682–5689.
  64. H. Wang, X.Z. Yuan, Y. Wu, H.J. Huang, G.M. Zeng, Y. Liu, X.L. Wang, N.B. Lin, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution, Appl. Surf. Sci., 279 (2013) 432–440.
  65. C.J. Madadrang, H.Y. Kim, G.H. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner, S.F. Hou, Adsorption behavior of EDTA-graphene oxide for Pb (II) removal, ACS Appl. Mater. Interfaces, 4 (2012) 1186–1193.
  66. Z.-H. Huang, X. Zheng, W. Lv, M. Wang, Q.-H. Yang, F. Kang, Adsorption of lead(II) ions from aqueous solution on lowtemperature exfoliated graphene nanosheets, Langmuir, 27 (2011) 7558–7562.
  67. S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar, A.K. Sood, Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water, ACS Appl. Mater. Interfaces, 6 (2014) 17426–17436.
  68. Y.-C, Lee, J.-W, Yang, Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal, J. Ind. Eng. Chem., 18 (2012) 1178–1185.
  69. L. Xu, J. Wang, The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater, Crit. Rev. Env. Sci. Technol., 47 (2017) 1042–1105.
  70. J. Li, S. Zhang, C. Chen, G. Zhao, X. Yang, J. Li, X. Wang, Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles, ACS Appl. Mater. Interfaces, 4 (2012) 4991–5000.
  71. J. Hur, J. Shin, J. Yoo, Y.-S. Seo, Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents, Sci. World J., 2015 (2015) 11 pages, https://doi.org/10.1155/2015/836287.
  72. D. Nandi, T. Basu, S. Debnath, A.K. Ghosh, A. De, U.C. Ghosh, Mechanistic insight for the sorption of Cd(II) and Cu(II) from aqueous solution on magnetic mn-doped Fe(III) oxide nanoparticle implanted graphene, J. Chem. Eng. Data, 58 (2013) 2809–2818.
  73. Y. Wang, S. Liang, B. Chen, F. Guo, S. Yu, Y. Tang, Synergistic removal of Pb(II), Cd(II) and humic acid by Fe3O4@mesoporous silica–graphene oxide composites, PLoS One, 8 (2013) e65634.
  74. L. Hao, H. Song, L. Zhang, X. Wan, Y. Tang, Y. Lv, SiO2/graphene composite for highly selective adsorption of Pb(II) ion, J. Colloid Interface Sci., 369 (2012) 381–387.
  75. S.P.Lee, G.A.M. Ali, H. Algarni, K.F. Chong, Flake sizedependent adsorption of graphene oxide aerogel, J. Mol. Liq., 277 (2019) 175–180.
  76. X. Li, J.J. Lenhart, H.W. Walker, Aggregation kinetics and dissolution of coated silver nanoparticles, Langmuir, 28 (2011) 1095–1104.
  77. S. Vasudevan, J. Lakshmi, The adsorption of phosphate by graphene from aqueous solution, RSC Adv., 2 (2012) 5234–5242.
  78. S. Zhang, Y. Shao, J. Liu, I.A. Aksay, Y. Lin, Graphenepolypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchange for removing ClO₄– from wastewater, ACS Appl. Mater. Interfaces, 3 (2011) 3633–3637.
  79. T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution, J. Colloid Interface Sci., 333 (2009) 114–119.
  80. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  81. F. Liu, S. Chung, G. Oh, T.S. Seo, Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal, ACS Appl. Mater. Interfaces, 4 (2012) 922–927.
  82. L. Ai, J. Jiang, Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene–carbon nanotube hybrid, Chem. Eng. J., 192 (2012) 156–163.
  83. X. Zhang, C. Cheng, J. Zhao, L. Ma, S. Sun, C. Zhao, Polyethersulfone enwrapped graphene oxide porous particles for water treatment, Chem. Eng. J., 215 (2013) 72–81.
  84. G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao, J. Wang, A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution, J. Mater. Chem., 22 (2012) 1033–1039.
  85. X. Wang, H. Tian, Y. Yang, H. Wang, S. Wang, W. Zheng, Y. Liu, Reduced graphene oxide/CdS for efficiently photocatalystic degradation of methylene blue, J. Alloys Compd., 524 (2012) 5–12.
  86. S. Bai, X. Shen, X. Zhong, Y. Liu, G. Zhu, X. Xu, K. Chen, Onepot solvothermal preparation of magnetic reduced graphene oxideferrite hybrids for organic dye removal, Carbon, 50 (2012) 2337–2346.
  87. P. Bradder, S.K. Ling, S. Wang, S. Liu, Dye adsorption on layered graphite oxide, J. Chem. Eng. Data, 56 (2010) 138–141.
  88. M. Rajabi, K. Mahanpoor, O. Moradi, Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: critical review, RSC Adv., 7 (2017) 47083–47090.
  89. X. Shi, W. Ruan, J. Hu, M. Fan, R. Cao, X. Wei, Optimizing the removal of rhodamine B in aqueous solutions by reduced graphene oxide-supported nanoscale zerovalent iron (NZVI/ RGO) using an artificial neural network-genetic algorithm (ANN-GA), Nanomaterials, 7 (2017) 134.
  90. S.M.S. Arabi, R.S. Lalehloo, M.R.T.B. Olyai, G.A.M. Ali, H. Sadegh, Removal of Congo Red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes, Physica E., 106 (2019) 150–155.
  91. V.K. Gupta, S. Agarwal, H. Sadegh, G.A.M. Ali, A.K. Bharti, A.S.H. Makhlouf, Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase, J. Mol. Liq., 237 (2017) 466–472.
  92. J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel, Sci. Rep., 5 (2015) 13578.
  93. F. Yu, J. Ma, D. Bi, Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene, Environ. Sci. Pollut. Res. Int., 22 (2015) 4715–4724.
  94. H. Chen, B. Gao, H. Li, Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide, J. Hazard. Mater., 282 (2015) 201–207.
  95. L. Zhao, F. Xue, B. Yu, J. Xie, X. Zhang, R. Wu, R. Wang, Z. Hu, S.-T. Yang, J. Luo, TiO2–graphene sponge for the removal of tetracycline, J. Nanopart. Res., 17 (2015) 16.
  96. E.E. Ghadim, F. Manouchehri, G. Soleimani, H. Hosseini, S. Kimiagar, S. Nafisi, Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies, PLoS One, 8 (2013) e79254.
  97. Y. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, Chem. Eng. J., 225 (2013) 679–685.
  98. A. Kassem, G.M. Ayoub, L.Malaeb, Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review, Sci. Total Environ., 668 (2019) 566–576.
  99. J. Fabrega, S.N. Luoma, C.R. Tyler, T.S. Galloway, J.R. Lead, Silver nanoparticles: behaviour and effects in the aquatic environment, Environ. Int., 37 (2011) 517–531.
  100. M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104 (2004) 293–346.
  101. L. Feng, M. Cao, X. Ma, Y. Zhu, C. Hu, Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal, J. Hazard. Mater., 217–218 (2012) 439–446.
  102. K. Gupta, S. Bhattacharya, D. Chattopadhyay, A. Mukhopadhyay, H. Biswas, J. Dutta, N.R. Ray, U.C. Ghosh, Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic(V) sorption behavior, Chem. Eng. J., 172 (2011) 219–229.
  103. T. Luo, J. Cui, S. Hu, Y. Huang, C. Jing, Arsenic removal and recovery from copper smelting wastewater using TiO2, Environ. Sci. Technol., 44 (2010) 9094–9098.
  104. C. Gao, W. Zhang, H. Li, L. Lang, Z. Xu, Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water, Cryst. Growth Des., 8 (2008) 3785–3790.
  105. A. Goswamia, P.K. Raul, M.K. Purkait, Arsenic adsorption using copper (II) oxide nanoparticles, Chem. Eng. Res. Des., 90 (2012) 1387–1396.
  106. C.Y. Cao, Z.M. Cui, C.Q. Chen, W.G. Song, W. Cai, Ceria hollow nanospheres produced by a template-free microwaveassisted hydrothermal method for heavy metal ion removal and catalysis, J. Phys. Chem. C, 114 (2010) 9865–9870.
  107. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211–212 (2012) 317–331.
  108. P. Lakshmipathiraj, B. Narasimhan, S. Prabhakar, G.B. Raju, Adsorption of arsenate on synthetic goethite from aqueous solutions, J. Hazard. Mater., 136 (2006) 281–287.
  109. K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion, Environ. Sci. Pollut. Res. Int., 18 (2011) 386–395.
  110. R.-F. Yu, F.-H. Chi, W.-P. Cheng, J.-C. Chang, Application of pH, ORP, and DO monitoring to evaluate chromium(VI) removal from wastewater by the nanoscale zerovalent iron (nZVI) process, Chem. Eng. J., 255 (2014) 568–576.
  111. Z. Wen, Y. Zhang, C. Dai, Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI), Colloids Surf., A, 457 (2014) 433–440.
  112. J. Fan, G. Yuo, J. Wang, M. Fan, Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles, J. Hazard. Mater., 166 (2009) 904–910.
  113. I. Gehrke, A. Geiser, A. Somborn-Schulz, Innovations in nanotechnology for water treatment, Nanotechnol. Sci. Appl., 8 (2015) 1–17.
  114. M.H. Mashhadizadeh, M. Amoli-Diva, Atomic absorption spectrometric determination of Al3+ and Cr3+ after preconcentration and separation on 3-mercaptopropionic acid modified silica coated-Fe3O4 nanoparticles, J. Anal. At. Spectrom., 28 (2013) 251–258.
  115. M.A. Karimi, A. Hatefi-Mehrjardi, S.Z. Mohammadi, A. Mohadesi, M. Mazloum-Ardakani, A.A. Kabir, M. Kazemipour, N. Afsahi, Solid phase extraction of trace amounts of silver (I) using dithizone-immobilized alumina-coated magnetite nanoparticles prior to determination by flame atomic absorption spectrometry, Int. J. Environ. Anal. Chem., 92 (2012) 1325–1340.
  116. Q. Li, M.H.W. Lam, R.S.S. Wu, B. Jiang, Rapid magneticmediated solid-phase extraction and pre-concentration of selected endocrine disrupting chemicals in natural waters by poly(divinylbenzene-co-methacrylic acid) coated Fe3O4 coreshell magnetite microspheres for their liquid chromatographytandem mass spectrometry determination, J. Chromatogr. A, 1217 (2010) 1219–1226.
  117. N. Pandey, S.K. Shukla, N.B. Singh, Water purification by polymer nanocomposites: an overview, Nanocomposites, 3 (2017) 47–66.
  118. M. Runowski, Nanotechnology – nanomaterials, nanoparticles and multifunctional nanostructures core/coating type, Chemik, 68 (2014) 766–775 (in Polish).
  119. T. Tosco, P.M. Papini, C.C. Viggi, R. Sethi, Nanoscale zerovalent iron particles for groundwater remediation: a review, J. Cleaner Prod., 77 (2014) 10–21.
  120. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  121. S. Dubey, S. Banerjee, S.N. Upadhyay, Y.C. Sharma, Application of common nano-materials for removal of selected metallic species from water and wastewaters: a critical review, J. Mol. Liq., 240 (2017) 656–677.
  122. R.A. Crane, M. Dickinson, I.C. Popescu, T.B. Scott, Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water, Water Res., 45 (2011) 2931–2942.
  123. S.L. Li, W. Wang, W.L. Yan, W.X. Zhang, Nanoscale zerovalent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration, Environ. Sci. Processes Impacts, 16 (2014) 524–533.
  124. M.A.V. Ramos, W. Yan, X.Q. Li, B.E. Koel, W.X. Zhang, Simultaneous oxidation and reduction of arsenic by zerovalent iron nanoparticles: understanding the significance of the core‐shell structure, J. Phys. Chem. C, 113 (2009) 14591–14594.
  125. A. Ryu, S.-W. Jeong, A. Jang, H. Choi, Reduction of highly concentrated nitrate using nanoscale zero-valent iron: effects of aggregation and catalyst on reactivity, Appl. Catal., B, 105 (2011) 128–135.
  126. Z. Fang, J. Chen, X. Qiu, X. Qiu, W. Cheng, L. Zhu, Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles, Desalination, 268 (2011) 60–67.
  127. N. Chauhan, S. Gupta, N. Singh, S. Singh, S.S. Islam, K.N. Sood, R. Pasricha, Aligned nanogold assisted one step sensing and removal of heavy metal ions, J. Colloid Interface Sci., 363 (2011) 42–50.
  128. Y.F. Lee, F.H. Nan, M.J. Chen, H.Y. Wu, C.W. Ho, Y.Y. Chen, C.C. Huang, Detection and removal of mercury and lead ions by using gold nanoparticle-based gel membrane, Anal. Methods, 4 (2012) 1709–1717.
  129. B. Nowack, H.F. Krug, M. Height, 120 y of nanosilver history: implications for policy makers, Environ. Sci. Technol., 45 (2011) 1177–1183.
  130. C. Zhang, Z. Hu, B. Deng, Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms, Water Res., 88 (2016) 403–427.
  131. R.S. Kalhapure, S.J. Sonawane, D.R. Sikwal, M. Jadhav, S. Rambharose, C. Mocktar, T. Govender, Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA, Colloids Surf., B, 136 (2015) 651–658.
  132. B. Borrego, G. Lorenzo, J.D. Mota-Morales, H. Almanza- Reyes, F. Mateos, E. López-Gil, N. de la Losa, V.A. Burmistrov, A.N. Pestryakov, A. Brun, Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo, Nanomed. Nanotechnol. Biol. Med., 12 (2016) 1185–1192.
  133. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275 (2004) 177–182.
  134. D.V. Quang, P.B. Sarawade, S.J. Jeon, S.H. Kim, J.-K. Kim, Y.G. Chai, H.T. Kim, Effective water disinfection using silver nanoparticle containing silica beads, Appl. Surf. Sci., 266 (2013) 280–287.
  135. V. Bokare, J.-L. Jung, Y.-Y. Chang, Y.-S. Chang, Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zerovalent zinc: modelling of rate kinetics and congener profile, J. Hazard. Mater., 250 (2013) 397–402.
  136. P.G. Tratnyek, A.J. Salter, J.T. Nurmi, V. Sarathy, Environmental Applications of Zerovalent Metals: Iron vs. Zinc, In: Nanoscale Materials in Chemistry: Environmental Applications, ACS Publications, Washington D.C., USA, 2010, pp. 165–178.
  137. P. Trivedi, L. Axe, Modeling Cd and Zn sorption to hydrous metal oxides, Environ. Sci. Technol., 34 (2000) 2215–2223.
  138. S. Yean, L. Cong, C.T. Yavuz, J.T. Mayo, W.W. Yu, A.T. Kan, V.L. Colvin, M.B. Tomson, Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate, J. Mater. Res., 20 (2005) 3255–3264.
  139. Y.C. Sharma, V. Srivastava, V.K. Singh, S.N. Kaul, C.H.Weng, Nano-adsorbents for the removal of metallic pollutants from water and wastewater, Environ. Technol., 30 (2009) 583–609.
  140. K.D. Hristovski, H. Nguyen, P.K. Westerhoff, Removal of arsenate and 17-ethinyl estradiol (EE2) by iron (hydr)oxide modified activated carbon fibers, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 44 (2009) 354–361.
  141. J. Hu, G.H. Chen, I.M.C. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms, J. Environ. Eng.-ASCE, 132 (2006) 709–715.
  142. M. Mohapatra, K. Rout, S.K. Gupta, P. Singh, S. Anand, B.K. Mishra, Facile synthesis of additive-assisted nano goethite powder and its application for fluoride remediation, J. Nanopart. Res., 12 (2009) 681–686.
  143. Y.H. Chen, F.A. Li, Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts, J. Colloid Interface Sci., 347 (2010) 277–281.
  144. H.J. Shipley, K.E. Engates, V.A. Grover, Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion, Environ. Sci. Pollut. Res. Int., 20 (2013) 1727–1736.
  145. J. Hu, I. Lo, G. Chen, Removal of Cr (VI) by magnetite, Water Sci. Technol., 50 (2004) 139–146.
  146. S.-Y. Mak, D.-H. Chen, Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles, Dyes Pigm., 61 (2004) 93–98.
  147. R. Akhbarizadeh, M.R. Shayesterfar, E. Darezereshki, Competitive removal of metals from wastewater by maghemite nanoparticles: a comparison between simulated wastewater and AMD, Mine Water Environ., 33 (2014) 89–96.
  148. K.L. Mercer, J.E. Tobiason, Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed vs. in situ formed HFO, Environ. Sci. Technol., 42 (2008) 3797–3802.
  149. S.A. Klein, B.M. Pawlik, The removal of arsenic from water using natural iron oxide minerals, J. Cleaner Prod., 29–30 (2012) 208–213.
  150. F. Ge, M.-M. Li, H. Ye, B.-X. Zhao, Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles, J. Hazard. Mater., 211 (2012) 366–372.
  151. M. Palimi, M. Rostami, M. Mahdavian, B. Ramezanzadeh, Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): an attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites, Appl. Surf. Sci., 320 (2014) 60–72.
  152. I. Tyagi, V. Gupta, H. Sadegh, R. Ghoshekandi, A.S.H. Makhlouf, Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review, Sci. Technol. Dev., 34 (2017) 95–214.
  153. R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Water purification from metal ions using carbon nanoparticleconjugated polymer nanocomposites, Water Res., 44 (2010) 1927–1933.
  154. Y. Pang, G. Zeng, L. Tang, Y. Zhang, Y. Liu, X. Lei, Z. Li, J. Zhang, G. Xie, PEI grafted magnetic porous powder for highly effective adsorption of heavy metal ions, Desalination, 281 (2011) 278–284.
  155. L. Cumbal, A.K. Sengupta, Arsenic removal using polymersupported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect, Environ. Sci. Technol., 39 (2005) 6508–6515.
  156. K. Zargoosh, H. Abedini, A. Abdolmaleki, M.R. Molavian, Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles, Ind. Eng. Chem. Res., 52 (2013) 14944–14954.
  157. L. Zhi, J. Liu, Y. Wang, W. Zhang, B. Wang, Z. Xu, Z. Yang, X. Huo, G. Li, Multifunctional Fe3O4 nanoparticles for highly sensitive detection and removal of Al(III) in aqueous solution, Nanoscale, 5 (2013) 1552–1556.
  158. L. Zhang, T. Huang, M. Zhang, X. Guo, Z. Yuan, Studies on the capability and behavior of adsorption of thallium on nano-Al2O3, J. Hazard. Mater., 157 (2008) 352–357.
  159. A. Afkhami, M. Saber-Tehrani, H. Bagheri, Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine, J. Hazard. Mater., 181 (2010) 836–844.
  160. S.S. Tripathy, J.L. Bersillon, K. Gopal, Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions, Desalination, 194 (2006) 11–21.
  161. S.P. Mishra, S.S. Dubey, D. Tiwari, Inorganic particulates in removal of heavy metal toxic ions: IX. Rapid and efficient removal of Hg (II) by hydrous manganese and tin oxides, J. Colloid Interface Sci., 279 (2004) 61–67.
  162. H. Choi, E. Stathatos, D.D. Dionysiou, Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications, Appl. Catal., B., 63 (2006) 60–67.
  163. S. Anandan, K. Kathiravan, V. Murugesan, Y. Ikuma, Anionic (IO3) non-metal doped TiO2 nanoparticles for the photocatalytic degradation of hazardous pollutant in water, Catal. Commun., 10 (2009) 1014–1019.
  164. A.D. Mani, P.M.K. Reddy, M. Srinivaas, P. Ghosal, N. Xanthopoulos, C. Subrahmanyam, Facile synthesis of efficient visible active C-doped TiO2 nanomaterials with high surface area for the simultaneous removal of phenol and Cr(VI), Mater. Res. Bull., 61 (2015) 391–399.
  165. R. George, N. Bahadur, N. Singh, R. Singh, A. Verma, A.K. Shukla, Environmentally benign TiO2 nanomaterials for removal of heavy metal ions with interfering ions present in tap water, Mater. Today:. Proc., 3 (2016) 162–166.
  166. W. Liu, W. Sun, Y. Han, M. Ahmadb, J. Ni, Adsorption of Cu(II) and Cd(II) on titanate nanomaterials synthesized via hydrothermal method under different NaOH concentrations: role of sodium content, Colloids Surf., A, 452 (2014) 138–147.
  167. Y. Chang, W. Han, A. Cai, H. Wang, Synthesis of lignosulfonateassisted flower-like titanate nanostructures and their excellent performance for heavy metal removal, Ceram. Int., 42 (2016) 8645–8649.
  168. H.Z. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, J. Phys. Chem. B, 104 (2000) 3481–3487.
  169. J. Lonnen, S. Kilvington, S.C. Kehoe, F. Al-Touati, K.G. McGuigan, Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water, Water Res., 39 (2005) 877–883.
  170. R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process., 42 (2016) 2–14.
  171. S. Gelover, P. Mondragón, A. Jiménez, Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination, J. Photochem. Photobiol., A, 165 (2004) 241–246.
  172. M.A. Rahman, M. Mohd, Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide, Desalination, 181 (2005) 161–172
  173. M. Flytzani-Stephanopoulos, M. Sakbodin, Z. Wang, Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides, Science, 312 (2006) 1508–1510.
  174. X. Wang, W. Cai, Y. Lin, G. Wang, C. Liang, Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation, J. Mater. Chem., 20 (2010) 8582–8590.
  175. T. Sheela, Y.A. Nayaka, R. Viswanatha, S. Basavanna, T.G. Venkatesha, Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles, Powder Technol., 217 (2012) 163–170.
  176. C. Gomez-Solís, J. Ballesteros, L. Torres-Martínez, I. Juárez- Ramírez, L.D. Torres, M.E. Zarazua-Morin, S.W. Lee, Rapid synthesis of ZnO nano-corncobs from Nital solution and its application in the photodegradation of methyl orange, J. Photochem. Photobiol., A, 298 (2015) 49–54.
  177. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res., 88 (2016) 428–448.
  178. K. Dai, L. Lu, C. Liang, J. Dai, G. Zhu, Z. Liu, Q. Liu, Y. Zhang, Graphene oxide modified ZnO nanorods hybrid with high reusable photocatalytic activity under UV-LED irradiation, Mater. Chem. Phys., 143 (2014) 1410–1416.
  179. M.T. Uddin, Y. Nicolas, C.L. Olivier, T. Toupance, L. Servant, M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes, Inorg. Chem., 51 (2012) 7764–7773.
  180. M. Samadi, A. Pourjavadi, A. Moshfegh, Role of CdO addition on the growth and photocatalytic activity of electrospun ZnO nanofibers: UV vs. visible light, Appl. Surf. Sci., 298 (2014)147–154.
  181. H.R. Pant, C.H. Park, B. Pant, L.D. Tijing, H.Y. Kim, C.S. Kim, Synthesis, characterization, and photocatalytic properties of ZnO nano-flower containing TiO2 NPs, Ceram. Int., 38 (2012) 2943–2950.
  182. P.R. Grossl, D.L. Sparks, C.C. Ainsworth, Rapid kinetics of Cu (II) adsorption/desorptionon goethite, Environ. Sci. Technol., 28 (1994) 1422–1429.
  183. X. Wei, S. Bhojappa, L.S. Lin, R.C. Viadero, Performance of Nano-magnetite for removal of selenium from aqueous solutions, Environ. Eng. Sci., 29 (2012) 526–532.
  184. A.A. Babaei, Z. Baboli, N. Jaafarzadeh, G. Goudarzi, M. Bahrami, M. Ahmadi, Synthesis, performance, and nonlinear modeling of modified nano-sized magnetite for removal of Cr (VI) from aqueous solutions, Desal. Water Treat., 53 (2015) 768–777.
  185. Y. Liu, M. Chen, Y. Hao, Study on the adsorption of Cu (II) by EDTA functionalized Fe3O4 magnetic nano particles, Chem. Eng. J., 218 (2013) 46–54.
  186. J. Zhang, S. Zhai, S. Li, Z. Xiao, Y. Song, Q. An, G. Tian, Pb(II) removal of Fe3O4@SiO2–NH2 core – shell nanomaterials prepared via a controllable sol – gel process, Chem. Eng. J., 215–216 (2013) 461–471.
  187. H. Karami, Heavy metal removal from water by magnetite nanorods, Chem. Eng. J., 219 (2013) 209–216.
  188. T. Nur, P. Loganathan, T.C. Nguyen, S. Vigneswaran, G. Singh, J. Kandasamy, Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling, Chem. Eng. J., 247 (2014) 93–102.
  189. Y.C. Sharma, V. Srivastava, A.K. Mukherjee, Synthesis and application of nano-Al2O3 powder for the reclamation of hexavalent chromium from aqueous solutions, J. Chem. Eng. Data, 55 (2010) 2390–2398.
  190. V. Srivastava, C.H. Weng, V.K. Singh, Y.C. Sharma, Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies, J. Chem. Eng. Data, 56 (2011) 1414–1422.
  191. A. Rahmani, H.Z. Mousavi, M. Fazli, Effect of nanostructure alumina on adsorption of heavy metals, Desalination, 253 (2010) 94–100.
  192. A.M. Mahmoud, F.A. Ibrahim, S.A. Shaban, N.A. Youssef, Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods, Egypt. J. Pet., 24 (2015) 27–35.
  193. J. Mukherjee, J. Ramkumar, S. Chandramouleeswaran, R. Shukla, A.K. Tyagi, Sorption characteristics of nano manganese oxide: efficient sorbent for removal of metal ions from aqueous streams, J. Radioanal. Nucl. Chem., 297 (2013) 49–57.
  194. H. Zhan, Y. Jiang, Q. Ma, Determination of adsorption characteristics of metal oxide nanomaterials: application as adsorbents, Anal. Lett., 47 (2014) 871–884.
  195. V.K. Gupta, R. Chandra, I. Tyagi, M. Verma, Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications, J. Colloid Interface Sci., 478 (2016) 54–62.
  196. X. Zhang, J. Liu, S.J. Kell, X. Huang, J. Liu, Biomimetic snowflakeshaped magnetic micro-/nanostructures for highly efficient adsorption of heavy metal ions and organic pollutants from aqueous solution, J. Mater. Chem. A, 2 (2014) 11759–11767.
  197. Y. Tu, C. You, C. Chang, Kinetics and thermodynamics of adsorption for Cd on green manufactured nano-particles, J. Hazard. Mater., 235–236 (2012) 116–122.
  198. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites – a review, Mater. Sci. Eng., A, 393 (2005) 1–11.
  199. X. Zhao, L. Lv, B.C. Pan, W.M. Zhang, S.J. Zhang, Q.X. Zhang, Polymer-supported nanocomposites for environmental application: a review, Chem. Eng. J., 170 (2011) 381–394.
  200. G. Lofrano, M. Carotenuto, G. Libralato, R.F. Domingos, A. Markus, L. Dini, R.K. Gautam, D. Baldantoni, M. Rossi, S.K. Sharma, M.C. Chattopadhyaya, M. Giugni, S. Meric, Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview, Water Res., 92 (2016) 22–37.
  201. C.S.C. Chiew, H.K. Yeoh, P. Pasbakhsh, K. Krishnaiah, P.E. Poh, B.T. Tey, E.S. Chan, Halloysite/algina H.K.te nanocomposite beads: kinetics, equilibrium and mechanism for lead adsorption, Appl. Clay Sci., 119 (2016) 301–310.
  202. U.Baig, R.A.K. Rao, A.A. Khan, M.M. Sanagi, M.A. Gondal, Removal of carcinogenic hexavalent chromium from aqueous solutions using newly synthesized and characterized polypyrrole- titanium(IV)phosphate nanocornposite, Chem. Eng. J., 280 (2015) 494–504.
  203. R. Bushra, M. Naushad, R. Adnan, Z.A. Alothman, M. Rafatullah, Polyaniline supported nanocomposite cation exchanger: synthesis, characterization and applications for the efficient removal of Pb2+ ion from aqueous medium, J. Ind. Eng. Chem., 21 (2015) 1112–1118.
  204. L. Chen, X. Zhao, B.C. Pan, W.X. Zhang, M. Hua, L. Lv, W.M. Zhang, Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability, J. Hazard. Mater., 284 (2015) 35–42.
  205. Q.R. Zhang, Q. Du, M. Hua, T.F. Jiao, G.F. Mao, B.C. Pan, Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites, Environ. Sci. Technol., 47 (2013) 6536–6544.
  206. D. Wang, A critical review of cellulose-based nanomaterials for water purification in industrial processes, Cellulose, 26 (2019) 687–701.
  207. E. Vunain, A.K. Mishra, B.B. Mamba, Dendrimers, mesoporous silicas and chitosanbased nanosorbents for the removal of heavy-metal ions: a review, Int. J. Biol. Macromol., 86 (2016) 570–586.
  208. K.Y. Foo, B.H. Hameed, Decontamination of textile wastewater via TiO2/activated carbon composite materials, Adv. Colloid Interface Sci., 159 (2010) 130–143.
  209. J.A. Arcibar-Orozco, M. Avalos-Borja, J.R. Rangel-Mendez, Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon: As(V) removal from water, Environ. Sci. Technol., 46 (2012) 9577–9583.
  210. Y. Kikuchi, Q. Qian, M. Machida, H. Tatsumoto, Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution, Carbon, 44 (2006) 195–202.
  211. P.Y. Furlan, M.E. Melcer, Removal of aromatic pollutant surrogate from water by recyclable magnetite-activated carbon nanocomposite: an experiment for general chemistry, J. Chem. Educ., 91 (2014) 1966–1970.
  212. V.K.K. Upadhyayula, V. Gadhamshetty, Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review, Biotechnol. Adv., 28 (2010) 802–816.
  213. M.R. Nabid, R. Sedghi, M. Behbahani, B. Arvan, M.M. Heravi, H.A. Oskooie, Application of poly 1,8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an efficient sorbent for trace determination of cadmium and lead ions in water samples, J. Mol. Recognit., 27 (2014) 421–428.
  214. W. Konicki, I. Pelech, E. Mijowska, I. Jasinska, Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: kinetics, equilibrium and thermodynamics, Chem. Eng. J., 210 (2012) 87–95.
  215. T.S. Mthombo, A.K. Mishra, S.B. Mishra, B.B. Mamba, The adsorption behavior of Cu(II), Pb(II), and Co(II) of ethylene vinyl acetate-clinoptilolite nanocomposites, J. Appl. Polym. Sci., 121 (2011) 3414–3424.
  216. M. Khatamian, Z. Alaji, Efficient adsorption-photodegradation of 4-nitrophenol in aqueous solution by using ZnO/HZSM-5 nanocomposites, Desalination, 286 (2012) 248–253.
  217. M.N. Chong, Z.Y. Tneu, P.E. Poh, B. Jin, R. Aryal, Synthesis, characterisation and application of TiO2-zeolite nanocomposites for the advanced treatment of industrial dye wastewater, J. Taiwan Inst. Chem. Eng., 50 (2015) 288–296.
  218. X.F. Tan, Y.G. Liu, Y.L. Gu, Y. Xu, G.M. Zeng, X.J. Hu, S.B. Liu, X. Wang, S.M. Liu, J. Li, Biochar-based nanocomposites for the decontamination of wastewater: a review, Bioresour. Technol., 212 (2016) 318–333.
  219. M. Zhang, B. Gao, S. Varnoosfaderani, A. Hebard, Y. Yao, M. Inyang, Preparation and characterization of a novel magnetic biochar for arsenic removal, Bioresour. Technol., 130 (2013) 457–462.
  220. M. Inyang, B. Gao, A. Zimmerman, M. Zhang, H. Chen, Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites, Chem. Eng. J., 236 (2014) 39–46.
  221. M. Zhang, B. Gao, Y. Yao, Y.W. Xue, M. Inyang, Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions, Chem. Eng. J., 210 (2012) 26–32.
  222. E.I. Unuabonah, A. Taubert, Clay-polymer nanocomposites (CPNs): adsorbents of the future for water treatment, Appl. Clay Sci., 99 (2014) 83–92.
  223. J.E. Bruna, A. Penaloza, A. Guarda, F. Rodriguez, M.J. Galotto, Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging, Appl. Clay Sci., 58 (2012) 79–87.
  224. Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
  225. W. Plazinski, A. Plazinska, Equilibrium and Kinetic Modeling of Adsorption at Solid/Solution Interfaces, In: A. Bhatnagar, Ed., Application of Adsorbents for Water Pollution Control, Bentham Science Publishers, 2012, pp. 32–80.
  226. C. Gerente, V.K.C. Lee, P. Le Cloirec, G. Mckay, Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review, Crit. Rev. Env. Sci. Technol., 37 (2007) 41–127.
  227. G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Adsorption of monoazo dyes (Crocein Orange G and Procion Red MX5B) from water using raw and acid-treated montmorillonite K10: insight into kinetics, isotherm, and thermodynamic parameters, Water Air Soil Pollut., 229 (2018) 312.
  228. A.M. Donia, A.A. Atia, F.I. Abouzayed, Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions, Chem. Eng. J., 191 (2012) 22–30.
  229. X. Zhou, H. Yi, X. Tang, H. Deng, H. Liu, Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber, Chem. Eng. J., 200–202 (2012) 399–404.
  230. S. Mandal, M.K. Sahu, R. Kishore, Adsorption studies of arsenic (III) removal from water by zirconium polyacrylamide hybrid, Water Resour. Ind., 4 (2013) 51–67.
  231. V. Sureshkumar, S.C.G.K. Danie, K. Ruckmani, M. Sivakumar, Fabrication of chitosan—magnetite nanocomposite strip for chromium removal, Appl. Nanosci., 6 (2016) 277–285.
  232. H. Jabeen, K.C. Kemp, V. Chandra, Synthesis of nano zerovalent iron nanoparticles-graphene composite for the treatment of lead contaminated water, Journal of Environ. Manage., 130 (2013) 429–435.
  233. S.X. Dong, X.M. Dou, D. Mohan, C.U. Pittman Jr., J.M. Luo, Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water, Chem. Eng. J., 270 (2015) 205–214.
  234. F. Fang, L.T. Kong, J.R. Huang, S.B. Wu, K.S. Zhang, X.L. Wang, B. Sun, Z. Jin, J. Wang, X.J. Huang, J.H. Liu, Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite, J. Hazard. Mater., 270 (2014) 1–10.
  235. M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution, Carbon, 44 (2006) 2681–2688.
  236. Y.B. Sun, D.D. Shao, C.L. Chen, S.B. Yang, X.K. Wang, Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline, Environ. Sci. Technol., 47 (2013) 9904–9910.
  237. T. Yao, Y.P. Xiao, X.W. Wu, C.Y. Guo, Y.L. Zhao, X. Chen, Adsorption of Eu(III) on sulfonated graphene oxide: combined macroscopic and modeling techniques, J. Mol. Liq., 215 (2016) 443–448.
  238. R.M. Ashour, A.F. Abdel-Magied, A.A. Abdel-khalek, O.S. Helaly, M.M. Ali, Preparation and characterization of magnetic iron oxide nanoparticles functionalized by L-cysteine: adsorption and desorption behavior for rare earth metal ions, J. Environ. Chem. Eng., 4 (2016) 3114–3121.
  239. Y. Tan, M. Chen, Y. Hao, High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano particles, Chem. Eng. J., 191 (2012) 104–111.
  240. A.S. Poursani, A. Nilchi, A.H. Hassani, M. Shariat, J. Nouri, A novel method for synthesis of nano-γ-Al2O3: study of adsorption behavior of chromium, nickel, cadmium and lead ions, Int. J. Environ. Sci. Technol., 12 (2015) 2003–2014.
  241. J.S. Azizian, M. Bagheri, Enhanced adsorption of Cu2+ from aqueous solution by Ag doped nano-structured ZnO, J. Mol. Liq., 196 (2014) 198–203.
  242. I. Mobasherpour, E. Salahi, M. Ebrahimi, Removal of divalent nickel cations from aqueous solution by multi-walled carbon nanotubes: equilibrium and kinetic processes, Res. Chem. Intermed., 38 (2012) 2205–2222.
  243. Y. Ren, N. Yan, Q. Wen, Z. Fan, T. Wei, M. Zhang, J. Ma, Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater, Chem. Eng. J., 175 (2011) 1–7.
  244. L. Yang, Z. Li, G. Nie, Z. Zhang, X. Lu, C. Wang, Fabrication of poly(o-phenylenediamine)/reduced graphene oxide composite nanosheets via microwave heating and their effective adsorption of lead ions, Appl. Surf. Sci., 307 (2014) 601–607.
  245. A. Sharma, B. Lee, Cd (II) removal and recovery enhancement by using acrylamide—titanium anocomposite as an adsorbent, Appl. Surf. Sci., 313 (2014) 624–632.
  246. W. Jung, B.H. Jeon, D.W. Cho, H.S. Roh, Y. Cho, S.J. Kim, D.S. Lee, Sorptive removal of heavy metals with nano-sized carbon immobilized alginate beads, J. Ind. Eng. Chem., 26 (2015) 364–369.
  247. K. Xie, L. Jing, W. Zhao, Y. Zhang, Adsorption removal of Cu2+ and Ni2+ from waste water using nano-cellulose hybrids containing reactive polyhedral oligomeric silsesquioxanes, J. Appl. Polym. Sci., 22 (2011) 2864–2868.
  248. S.B. Khan, K.A. Alamry, H.M. Marwani, A.M. Asiri, M.M. Rahman, Synthesis and environmental applications of cellulose/ZrO2 nanohybrid as a selective adsorbent for nickel ion, Composites Part B, 50 (2013) 253–258.
  249. G.N. Kousalya, M.R. Gandhi, S. Meenakshi, Removal of toxic Cr (VI) ions from aqueous solution using nanohydroxyapatite-based chitin and chitosan hybrid composites, Adsorpt. Sci. Technol., 28 (2010) 49–64.
  250. A.F. El-Kafrawy, S.M. El-Saeed, R.K. Farag, H. Al-Aidy El-Saied, M. El-Sayed Abdel-Raouf, Adsorbents based on natural polymers for removal of some heavy metals from aqueous solution, Egypt. J. Pet., 26 (2017) 23–32.
  251. L. Yang, X. Chu, F. Wang, Y. Li, L. Zhang, Investigation of selective and effective recovery of noble metal osmium by adsorption onto nano Al2O3 particles, New J. Chem., 38 (2014) 3250–3257.