References

  1. P. Nagajyoti, K. Lee, T. Sreekanth, Heavy metals, occurrence and toxicity for plants: a review, Environ. Chem. Lett., 8 (2010) 199–216.
  2. Y. Hu, X. Liu, J. Bai, K. Shih, E.Y. Zeng, H. Cheng, Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization, Environ. Sci. Pollut. Res., 20 (2013) 6150–6159.
  3. L. El Fakir, M. Flayou, A. Dahchour, S. Sebbahi, F. Kifani- Sahban, S. El Hajjaji, Adsorptive removal of copper(II) from aqueous solutions on phosphates: equilibrium, kinetics, and thermodynamics, Desal. Wat. Treat., 57 (2016) 17118–17127.
  4. C. Canoluk, S.S. Gursoy, Chemical modification of rose leaf with polypyrrole for the removal of Pb(II) and Cd(II) from aqueous solution, J. Macromol. Sci. A, 54 (2017) 782–790.
  5. W. Shin, K. Na, Y. Kim, Adsorption of metal ions from aqueous solution by recycled aggregate: estimation of pretreatment effect, J. Ind. Eng. Chem., 57 (2016) 9366–9374.
  6. O.E.A. Salam, N.A. Reiad, M.M. ElShafei, A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents, J. Adv. Res., 2 (2011) 297–303.
  7. A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review, Chem. Eng. J., 157 (2010) 277–296.
  8. S. Malamis, E. Katsou, A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms, J. Hazard. Mater., 252–253 (2013) 428–461.
  9. L. Giaccio, D. Cicchella, B. De Vivo, G. Lombardi, M. De Rosa, Does heavy metals pollution affects semen quality in men? A case of study in the metropolitan area of Naples (Italy), J. Geochem. Explor., 112 (2012) 218–225.
  10. M.M. Authman, M.S. Zaki, E.A. Khallaf, H.H. Abbas, Use of fish as bio-indicator of the effects of heavy metals pollution, J. Aquacult. Res. Dev., 6 (2015) 1–13.
  11. M. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  12. M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat, Remediation of wastewater using various nano-materials, Arabian J. Chem., 12 (2016) 1–23.
  13. C.Y. Cheok, N. Mohd Adzahan, R. Abdul Rahman, N.H. Zainal Abedin, N. Hussain, R. Sulaiman, G.H. Chong, Current trends of tropical fruit waste utilization, Crit. Rev. Food Sci. Nutr., 58 (2018) 335–361.
  14. J. Zhao, Y. Zhu, J. Wu, J. Zheng, X. Zhao, B. Lu, F. Chen, Chitosan-coated mesoporous microspheres of calcium silicate hydrate: environmentally friendly synthesis and application as a highly efficient adsorbent for heavy metal ions, J. Colloid Interface Sci., 418 (2014) 208–215.
  15. H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J., 9 (2013) 276–282.
  16. A.M. Mahmoud, F.A. Ibrahim, S.A. Shaban, N.A. Youssef, Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods, Egypt. J. Pet., 24 (2015) 27–35.
  17. E. Worch, Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, Walter de Gruyter Publications, Germany, 2012.
  18. T. Dambrauskas, K. Baltakys, J. Škamat, A. Kudžma, Hydration peculiarities of high basicity calcium silicate hydrate samples, J. Therm. Anal. Calorim., 131 (2018) 491–499.
  19. K. Baltakys, A. Eisinas, T. Dambrauskas, The influence of aluminum additive on the α-C2S hydrate formation process, J. Therm. Anal. Calorim., 121 (2015) 75–84.
  20. A. Ali, K. Saeed, Phenol removal from aqueous medium using chemically modified banana peels as low-cost adsorbent, Desal. Wat. Treat., 57 (2016) 11242–11254.
  21. S. He, C. Zhao, P. Yao, S. Yang, Chemical modification of silica gel with multidentate ligands for heavy metals removal, Desal. Wat. Treat., 57 (2016) 1722–1732.
  22. T.C. Drage, A. Arenillas, K.M. Smith, C.E. Snape, Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies, Microporous Mesoporous Mater., 116 (2008) 504–512.
  23. V. Khandegar, A.K. Saroha, Electrocoagulation for the treatment of textile industry effluent – a review, J. Environ. Manage., 128 (2013) 949–963.
  24. Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol., 157 (2016) 141–161.
  25. V. Kasperaviciute, K. Baltakys, R. Siauciunas, The sorption properties of gyrolite for copper ions, Ceram. Silik., 52 (2008) 95–101.
  26. A. Bankauskaite, K. Baltakys, A. Eisinas, S. Zadaviciute, A study on the intercalation of heavy metal ions in a wastewater by synthetic layered inorganic adsorbents, Desal. Wat. Treat., 56 (2015) 1576–1586.
  27. Q. Chen, C.D. Hills, M. Yuan, H. Liu, M. Tyrer, Characterization of carbonated tricalcium silicate and its sorption capacity for heavy metals: a micron-scale composite adsorbent of active silicate gel and calcite, J. Hazard. Mater., 153 (2008) 775–783.
  28. S.S. Obaid, D.K. Gaikwad, M.I. Sayyed, K. AL-Rashdi, P.P. Pawar, Heavy metal ions removal from wastewater by the natural zeolites, Mater. Today:. Proc., 5 (2018) 17930–17934.
  29. O. Shrivastava, F.P. Glasser, Ion-exchange properties of Ca5Si6O18H2·4H2O, J. Mater. Sci. Lett., 4 (1985) 1122–1124.
  30. N. Labhasetwar, O. Shrivastava, Ca2 ⇌ Pb2 exchange reaction of calcium silicate hydrate: Ca5Si6O18H2·4H2O, J. Mater. Sci., 24 (1989) 4359–4362.
  31. L. Skinner, S. Chae, C. Benmore, H. Wenk, P. Monteiro, Nanostructure of calcium silicate hydrates in cements, Phys. Rev. Lett., 104 (2010) 195502.
  32. E. Gartner, H. Hirao, A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete, Cem. Concr. Res., 78 (2015) 126–142.
  33. K. Okano, S. Miyamaru, A. Kitao, H. Takano, T. Aketo, M. Toda, K. Honda, H. Ohtake, Amorphous calcium silicate hydrates and their possible mechanism for recovering phosphate from wastewater, Sep. Purif. Technol., 144 (2015) 63–69.
  34. W. You, M. Hong, H. Zhang, Q. Wu, Z. Zhuang, Y. Yu, Functionalized calcium silicate nanofibers with hierarchical structure derived from oyster shells and their application in heavy metal ions removal, Phys. Chem. Chem. Phys., 18 (2016) 15564–15573.
  35. S. Shaw, S.M. Clark, C.M.B. Henderson, Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca5Si6O17(OH)2): an in situ synchrotron study, Chem. Geol., 167 (2000) 129–140.
  36. J.J. Chen, J.J. Thomas, H.F.W. Taylor, H.M. Jennings, Solubility and structure of calcium silicate hydrate, Cem. Concr. Res., 34 (2004) 1499–1519.
  37. C. Labbez, A. Nonat, I. Pochard, B. Jönsson, Experimental and theoretical evidence of overcharging of calcium silicate hydrate, J. Colloid Interface Sci., 309 (2007) 303–307.
  38. I.G. Richardson, The calcium silicate hydrates, Cem. Concr. Res., 38 (2008) 137–158.
  39. Q.Y. Chen, M. Tyrer, C.D. Hills, X.M. Yang, P. Carey, Immobilisation of heavy metal in cement-based solidification/stabilization: a review, Waste Manage., 29 (2009) 390–403.
  40. R. Siauciunas, K. Baltakys, R. Gendvilas, A. Eisinas, The influence of Cd-impure gyrolite on the hydration of composite binder material based on α-C2S hydrate, J. Therm. Anal. Calorim., 118 (2014) 857–863.
  41. X. Guo, H. Shi, Microstructure and heavy metal adsorption mechanisms of hydrothermally synthesized Al-substituted tobermorite, Mater. Struct., 50 (2017) 245.
  42. K. Baltakys, A. Eisinas, I. Barauskas, E. Prichockiene, E. Zaleckas, Removal of Zn(II), Cu(II) and Cd(II) from aqueous solution using gyrolite., J. Sci. Ind. Res., 71 (2012) 566–572.
  43. S. Zadaviciute, A. Bankauskaite, K. Baltakys, A. Eisinas, The study of CP determination of hydrotalcite intercalated with heavy metal ions, J. Therm. Anal. Calorim., 131 (2018) 521–527.
  44. S. Chen, C. Cheng, C. Li, P. Chai, Y. Chang, Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero-valent iron process, J. Hazard. Mater., 142 (2007) 362–367.
  45. P. Miretzky, A.F. Cirelli, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review, J. Hazard. Mater., 180 (2010) 1–19.
  46. A.Z.M. Badruddoza, Z.B.Z. Shawon, W.J.D. Tay, K. Hidajat, M.S. Uddin, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater, Carbohydr. Polym., 91 (2013) 322–332.
  47. A. Heidari, H. Younesi, Z. Mehraban, Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica, Chem. Eng. J., 153 (2009) 70–79.
  48. S. Sen Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials: a review, Adv. Colloid Interface Sci., 162 (2011) 39–58.
  49. M. Algarra, M.V. Jiménez, E. Rodríguez-Castellón, A. Jiménez-López, J. Jiménez-Jiménez, Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41, Chemosphere, 59 (2005) 779–786.
  50. D. Niuniavaite, K. Baltakys, T. Dambrauskas, The adsorption kinetic parameters of CO2 ions by α-C2SH, Buildings, 8 (2018) 10.
  51. J.H. Johnston, T. Borrmann, D. Rankin, M. Cairns, J.E. Grindrod, A. Mcfarlane, Nano-structured composite calcium silicate and some novel applications, Curr. Appl. Phys., 8 (2008) 504–507.
  52. J. Lin, L. Wang, Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon, Front. Environ. Sci. Eng., 3 (2009) 320–324.
  53. J. Simonin, On the comparison of pseudo-first-order and pseudo-second-order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  54. A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 15 (2016) 14–27.
  55. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276 (2004) 47–52.
  56. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  57. S. Zadaviciute, K. Baltakys, A. Eisinas, A. Bankauskaite, Simultaneous adsorption at 25°C and the peculiarities of gyrolite substituted with heavy metals, J. Therm. Anal. Calorim., 127 (2017) 335–343.
  58. S. Shaw, C.M.B. Henderson, B.U. Komanschek, Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study, Chem. Geol., 167 (2000) 141–159.
  59. J. Gong, T. Liu, X. Wang, X. Hu, L. Zhang, Efficient removal of heavy metal ions from aqueous systems with the assembly of anisotropic layered double hydroxide nanocrystals@ carbon nanosphere, Environ. Sci. Technol., 45 (2011) 6181–6187.
  60. D.C. Pereira, D.L.A. de Faria, V.R. Constantino, CuII hydroxy salts: characterization of layered compounds by vibrational spectroscopy, J. Braz. Chem. Soc., 17 (2006) 1651–1657.
  61. Z. Wang, K. Tan, J. Cai, S. Hou, Y. Wang, P. Jiang, M. Liang, Silica oxide encapsulated natural zeolite for high-efficiency removal of low concentration heavy metals in water, Colloids Surf., A, 561 (2019) 388–394.
  62. F. Ogata, E. Ueta, N. Kawasaki, Characteristics of a novel adsorbent Fe–Mg-type hydrotalcite and its adsorption capability of As(III) and Cr(VI) from aqueous solution, J. Ind. Eng. Chem., 59 (2018) 56–63.
  63. T. Link, F. Bellmann, H. Ludwig, M.B. Haha, Reactivity and phase composition of Ca2SiO4 binders made by annealing of alpha-dicalcium silicate hydrate, Cem. Concr. Res., 67 (2015) 131–137.
  64. X. Guo, F. Meng, H. Shi, Microstructure and characterization of hydrothermal synthesis of Al-substituted tobermorite, Constr. Build. Mater., 133 (2017) 253–260.