References

  1. Y. Wu, X. Ma, M. Feng, M. Liu, Behavior of chromium and arsenic on activated carbon, J. Hazard. Mater., 159 (2008) 380–384.
  2. T. Levine, W. Marcus, C. Chen, A. Rispin, Special Report on Ingested Inorganic Arsenic Skin Cancer, Nutritional Essentiality, Risk Assessment Forum, U.S. Environmental Protection Agency, EPA- 625/3-87/013, Washington, D.C., 20460, 1988.
  3. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Arsenic, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 2007.
  4. United States Environmental Protection Agency, Arsenic and Clarifications to Compliance and New Source Monitoring Rule 66 FR 6976, Office of Water (66 FR 6976), 2001, EPA 816-F-01-004.
  5. World Health Organization, Guidelines for Drinking Water Quality: Recommendations, Geneva, 1, 1993.
  6. S.K. Tiwari, V.K. Pandey, Removal of arsenic from drinking water by precipitation and adsorption or cementation: an environmental prospective, Recent Res. Sci. Technol., 5 (2013) 88–91.
  7. Y. Sato, M. Kang, T. Kamei, Y. Magara, Performance of nanofiltration for arsenic removal, Water Res., 36 (2002) 3371–3377.
  8. G. Ghurye, D. Clifford, Laboratory Study on the Oxidation of Arsenic III to Arsenic V, EPA/600/R-01/021, March 2001, p. 87.
  9. USEPA, Technologies, and Costs for Removal of Arsenic from Drinking Water (EPA 815-R-00-028), United States Environmental Protection Agency, Washington, D.C., 2000.
  10. K.S. Ng, Z. Ujang, P. Le-Clech, Arsenic removal technologies for drinking water treatment, Rev. Environ. Sci. Biotechnol., 3 (2004) 43–53.
  11. T. Budinova, N. Petrov, M. Razvigorova, J. Parra, P. Galiatsatou, Removal of arsenic(III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones, Ind. Eng. Chem. Res., 45 (2006) 1896–1901.
  12. G.N. Manju, C. Raji, T.S. Anirudhan, Evaluation of coconut husk carbon for the removal of arsenic from water, Water Res., 32 (1998) 3062–3070.
  13. J. Laine, A. Calafat, M. Labady, Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid, Carbon, 27 (1989) 191–195.
  14. D. Mohan, K.P. Singh, S. Singh, D. Ghosh, Removal of α-picoline, β-picoline, and γ-picoline from synthetic wastewater using low cost activated carbons derived from coconut shell fibers, Environ. Sci. Technol., 39 (2005) 5076–5086.
  15. D. Mohan, K.P. Singh, S. Singh, D. Ghosh, Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials, Carbon, 43 (2005) 1680–1693.
  16. D. Mohan, K.P. Singh, V.K. Singh, Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth, J. Hazard. Mater., 135 (2006) 280–295.
  17. F.M.C. Alvim, Preparation of activated carbon for air pollution control, Fuel, 67 (1988) 1237–1241.
  18. C.A. Toles, W.E. Marshall, M.M. Johns, Granular activated carbon from nutshells for the uptake of metals and organic compounds, Carbon, 35 (1997) 1407–1414.
  19. C.L. Chuang, M. Fan, M. Xu, R.C. Brown, S. Sung, B. Saha, C.P. Huang, Adsorption of arsenic (V) by activated carbon prepared from oat hulls, Chemosphere, 61 (2005) 478–483.
  20. M.R. Samarghandi, M. Hadi, S. Moayedi, F.B. Askari, Twoparameter isotherms of methyl orange sorption by pinecone derived activated carbon, Iran. J. Environ. Health Sci. Eng., 6 (2009) 285–294.
  21. S. Dawood, K.S. Tushar, C. Phan, Synthesis and characterization of novel-activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption, Water Air Soil Pollut., 225 (2013) 1818.
  22. M. Momcilovic, M. Purenovic, A. Bojic, A. Zarubica, M. Randelovic, Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon, Desalination, 276 (2011) 53–59.
  23. U. Gecgel, H. Kolancilar, Adsorption of Remazol Brilliant Blue R on activated carbon prepared from a pine cone, Nat. Prod. Res., 26 (2012) 659–664.
  24. M.Z. Momcilovic, A.E. Onjia, M.M. Purenovic, A.R. Zarubica, M.S. Randelovic, Removal of a cationic dye from water by activated pinecones, J. Serb. Chem. Soc., 77 (2012) 761–774.
  25. G. Duman, Y. Onal, C. Okutucu, S. Onenc, J. Yanik, Production of activated carbon from pine cone and evaluation of its physical, chemical, and adsorption properties, Energy Fuels, 23 (2009) 2197–2204.
  26. N.V. Vinh, M. Zafar, S.K. Behera, H.S. Park, Arsenic(III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies, Int. J. Environ. Sci. Technol., 12 (2015) 1283–1294.
  27. K.B. Payne, T.M. Abdel-Fattah, Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength, J. Environ. Sci. Health, 40 (2005) 723–749.
  28. G.P. Gillman, E.A. Sumpter, Modification to the compulsive exchange method for measuring exchange characteristics of soils, Aust. J. Soil Res., 24 (1986) 61–66.
  29. R.M. Shrestha, A.P. Yadav, B.P. Pokharel, R.R. Pradhananga, Preparation and characterization of activated carbon from Lapsi (Choerospondias axillaris) seed stone by chemical activation with phosphoric acid, Res. J. Chem. Sci., 2 (2012) 80–86.
  30. G.W. Sears, Determination of specific surface area of colloidal silica by titration with sodium hydroxide, Anal. Chem., 28 (1956) 1981–1983.
  31. S.S. Tahir, N. Rauf, Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, Chemosphere, 63 (2006) 1842–1848.
  32. R. Helleur, N. Popovic, M. Ikura, M. Stanciulescu, D. Liu, Caracterisation and potential application of pyrolytic char from ablative pyrolysis of used tyres, J. Anal. Appl. Pyrolysis, 58–59 (2001) 813–824.
  33. E.C. Bernardo, R. Egashira, J. Kawasaki, Decolorization of molasses’ wastewater using activated carbon prepared from cane bagasse, Carbon, 35 (1997) 1217–1221.
  34. R. Baccar, J. Bouzida, M. Feki, A. Montiel, Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions, J. Hazard. Mater., 162 (2009) 1522–1529.
  35. Association Scientifique et Technique pour l’Eau et l’Environnement (ASTEE), Réglementation et traitement des eaux destinés à la consommation humaine, 1ére edition, Paris, 2006.
  36. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  37. E. Zeynep, N. A. Filiz, Equilibrium and kinetic mechanism for reactive black 5 sorption onto high lime soda fly ash, J. Hazard. Mater., 143 (2007) 226–232.
  38. H.M.F. Freundlich, Uber die adsorption in losungen, Zeitschrift für Physikalische Chemie, 57 (1906) 385–470.
  39. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Phys. URSS, 12 (1940) 217–222.
  40. R. Palas, K.M. Naba, B. Shreya, D. Biswajit, D. Kousik, Removal of arsenic (III) and arsenic (V) on chemically modified lowcost adsorbent: batch and column operations, Appl. Water Sci., 3 (2013) 293–309.
  41. Lalhmunsiama, D. Tiwari, S.-M. Lee, Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water, Environ. Eng. Res. 17 (2012) S41-S48.
  42. P. Mondal, C. Balomajumder, B. Mohanty, A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: effects of shaking time, pH and temperature, J. Hazard. Mater., 144 (2007) 420–426.
  43. T.E.M. ten Hulscher, G. Cornelissen, Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants – a review, Chemosphere, 32 (1996) 609–626.
  44. S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan, C.V. Subburaam, Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste, Bioresour. Technol., 97 (2006) 1618–1625.
  45. S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  46. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  47. V.C. Taty-Costodes, H. Fauduet, C. Porte, A. Delacroix, Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris, J. Hazard. Mater., 105 (2003) 121–42.
  48. A.P. Olalekan, A.O. Dada, A.O. Okewale, Comparative adsorption isotherm study of the removal of Pb2+ and Zn2+ onto agricultural waste, Res. J. Chem. Environ. Sci., 1 (2013) 22–27.
  49. E.O. Augustine, Y.S. Ho, Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust, Bioresour. Technol., 99 (2008) 5411–5417.
  50. B. Radomir, J.M. Ljupković, R. Miljana, K. Miloš, B. Danijela, M.S. Dragana-Linda, L.B. Aleksandar, Removal Cu(II) ions from water using sulphuric acid treated Lagenaria vulgaris shell (Cucurbitaceae), Biol. Nyssana, 2 (2011) 85–89.
  51. S. Goldberg, C.T. Johnston, Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling, J. Colloid Interface Sci., 234 (2001) 204–216.
  52. D.G. Brookins, Eh-pH Diagrams for Geochemistry, Springer-Verlag, New York, 1988, p. 176.