References
- Y. Wu, X. Ma, M. Feng, M. Liu, Behavior of chromium and
arsenic on activated carbon, J. Hazard. Mater., 159 (2008) 380–384.
- T. Levine, W. Marcus, C. Chen, A. Rispin, Special Report on
Ingested Inorganic Arsenic Skin Cancer, Nutritional Essentiality,
Risk Assessment Forum, U.S. Environmental Protection Agency,
EPA- 625/3-87/013, Washington, D.C., 20460, 1988.
- Agency for Toxic Substances and Disease Registry (ATSDR),
Toxicological Profile for Arsenic, U.S. Department of Health
and Human Services, Public Health Service, Atlanta, GA, 2007.
- United States Environmental Protection Agency, Arsenic and
Clarifications to Compliance and New Source Monitoring Rule
66 FR 6976, Office of Water (66 FR 6976), 2001, EPA 816-F-01-004.
- World Health Organization, Guidelines for Drinking Water
Quality: Recommendations, Geneva, 1, 1993.
- S.K. Tiwari, V.K. Pandey, Removal of arsenic from drinking
water by precipitation and adsorption or cementation: an
environmental prospective, Recent Res. Sci. Technol., 5 (2013)
88–91.
- Y. Sato, M. Kang, T. Kamei, Y. Magara, Performance of
nanofiltration for arsenic removal, Water Res., 36 (2002)
3371–3377.
- G. Ghurye, D. Clifford, Laboratory Study on the Oxidation of
Arsenic III to Arsenic V, EPA/600/R-01/021, March 2001, p. 87.
- USEPA, Technologies, and Costs for Removal of Arsenic
from Drinking Water (EPA 815-R-00-028), United States
Environmental Protection Agency, Washington, D.C., 2000.
- K.S. Ng, Z. Ujang, P. Le-Clech, Arsenic removal technologies
for drinking water treatment, Rev. Environ. Sci. Biotechnol.,
3 (2004) 43–53.
- T. Budinova, N. Petrov, M. Razvigorova, J. Parra, P. Galiatsatou,
Removal of arsenic(III) from aqueous solution by activated
carbons prepared from solvent extracted olive pulp and olive
stones, Ind. Eng. Chem. Res., 45 (2006) 1896–1901.
- G.N. Manju, C. Raji, T.S. Anirudhan, Evaluation of coconut
husk carbon for the removal of arsenic from water, Water Res.,
32 (1998) 3062–3070.
- J. Laine, A. Calafat, M. Labady, Preparation and characterization
of activated carbons from coconut shell impregnated with
phosphoric acid, Carbon, 27 (1989) 191–195.
- D. Mohan, K.P. Singh, S. Singh, D. Ghosh, Removal of α-picoline,
β-picoline, and γ-picoline from synthetic wastewater using
low cost activated carbons derived from coconut shell fibers,
Environ. Sci. Technol., 39 (2005) 5076–5086.
- D. Mohan, K.P. Singh, S. Singh, D. Ghosh, Removal of pyridine
derivatives from aqueous solution by activated carbons
developed from agricultural waste materials, Carbon, 43 (2005)
1680–1693.
- D. Mohan, K.P. Singh, V.K. Singh, Trivalent chromium removal
from wastewater using low cost activated carbon derived from
agricultural waste material and activated carbon fabric cloth,
J. Hazard. Mater., 135 (2006) 280–295.
- F.M.C. Alvim, Preparation of activated carbon for air pollution
control, Fuel, 67 (1988) 1237–1241.
- C.A. Toles, W.E. Marshall, M.M. Johns, Granular activated
carbon from nutshells for the uptake of metals and organic
compounds, Carbon, 35 (1997) 1407–1414.
- C.L. Chuang, M. Fan, M. Xu, R.C. Brown, S. Sung, B. Saha,
C.P. Huang, Adsorption of arsenic (V) by activated carbon
prepared from oat hulls, Chemosphere, 61 (2005) 478–483.
- M.R. Samarghandi, M. Hadi, S. Moayedi, F.B. Askari, Twoparameter
isotherms of methyl orange sorption by pinecone
derived activated carbon, Iran. J. Environ. Health Sci. Eng.,
6 (2009) 285–294.
- S. Dawood, K.S. Tushar, C. Phan, Synthesis and characterization
of novel-activated carbon from waste biomass pine cone and
its application in the removal of congo red dye from aqueous
solution by adsorption, Water Air Soil Pollut., 225 (2013) 1818.
- M. Momcilovic, M. Purenovic, A. Bojic, A. Zarubica, M. Randelovic,
Removal of lead(II) ions from aqueous solutions by
adsorption onto pine cone activated carbon, Desalination,
276 (2011) 53–59.
- U. Gecgel, H. Kolancilar, Adsorption of Remazol Brilliant Blue
R on activated carbon prepared from a pine cone, Nat. Prod.
Res., 26 (2012) 659–664.
- M.Z. Momcilovic, A.E. Onjia, M.M. Purenovic, A.R. Zarubica,
M.S. Randelovic, Removal of a cationic dye from water by
activated pinecones, J. Serb. Chem. Soc., 77 (2012) 761–774.
- G. Duman, Y. Onal, C. Okutucu, S. Onenc, J. Yanik, Production
of activated carbon from pine cone and evaluation of its
physical, chemical, and adsorption properties, Energy Fuels,
23 (2009) 2197–2204.
- N.V. Vinh, M. Zafar, S.K. Behera, H.S. Park, Arsenic(III) removal
from aqueous solution by raw and zinc-loaded pine cone
biochar: equilibrium, kinetics, and thermodynamics studies,
Int. J. Environ. Sci. Technol., 12 (2015) 1283–1294.
- K.B. Payne, T.M. Abdel-Fattah, Adsorption of arsenate and
arsenite by iron-treated activated carbon and zeolites: effects
of pH, temperature, and ionic strength, J. Environ. Sci. Health,
40 (2005) 723–749.
- G.P. Gillman, E.A. Sumpter, Modification to the compulsive
exchange method for measuring exchange characteristics of
soils, Aust. J. Soil Res., 24 (1986) 61–66.
- R.M. Shrestha, A.P. Yadav, B.P. Pokharel, R.R. Pradhananga,
Preparation and characterization of activated carbon from
Lapsi (Choerospondias axillaris) seed stone by chemical activation
with phosphoric acid, Res. J. Chem. Sci., 2 (2012) 80–86.
- G.W. Sears, Determination of specific surface area of colloidal
silica by titration with sodium hydroxide, Anal. Chem., 28 (1956)
1981–1983.
- S.S. Tahir, N. Rauf, Removal of a cationic dye from aqueous
solutions by adsorption onto bentonite clay, Chemosphere,
63 (2006) 1842–1848.
- R. Helleur, N. Popovic, M. Ikura, M. Stanciulescu, D. Liu,
Caracterisation and potential application of pyrolytic char from
ablative pyrolysis of used tyres, J. Anal. Appl. Pyrolysis, 58–59
(2001) 813–824.
- E.C. Bernardo, R. Egashira, J. Kawasaki, Decolorization of
molasses’ wastewater using activated carbon prepared from
cane bagasse, Carbon, 35 (1997) 1217–1221.
- R. Baccar, J. Bouzida, M. Feki, A. Montiel, Preparation of
activated carbon from Tunisian olive-waste cakes and its
application for adsorption of heavy metal ions, J. Hazard.
Mater., 162 (2009) 1522–1529.
- Association Scientifique et Technique pour l’Eau et l’Environnement
(ASTEE), Réglementation et traitement des eaux
destinés à la consommation humaine, 1ére edition, Paris, 2006.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
- E. Zeynep, N. A. Filiz, Equilibrium and kinetic mechanism for
reactive black 5 sorption onto high lime soda fly ash, J. Hazard.
Mater., 143 (2007) 226–232.
- H.M.F. Freundlich, Uber die adsorption in losungen, Zeitschrift
für Physikalische Chemie, 57 (1906) 385–470.
- M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir
isotherms, Acta Phys. URSS, 12 (1940) 217–222.
- R. Palas, K.M. Naba, B. Shreya, D. Biswajit, D. Kousik, Removal
of arsenic (III) and arsenic (V) on chemically modified lowcost
adsorbent: batch and column operations, Appl. Water Sci.,
3 (2013) 293–309.
- Lalhmunsiama, D. Tiwari, S.-M. Lee, Activated carbon and
manganese coated activated carbon precursor to dead biomass
in the remediation of arsenic contaminated water, Environ. Eng.
Res. 17 (2012) S41-S48.
- P. Mondal, C. Balomajumder, B. Mohanty, A laboratory study
for the treatment of arsenic, iron, and manganese bearing
ground water using Fe3+ impregnated activated carbon: effects
of shaking time, pH and temperature, J. Hazard. Mater.,
144 (2007) 420–426.
- T.E.M. ten Hulscher, G. Cornelissen, Effect of temperature on
sorption equilibrium and sorption kinetics of organic micropollutants
– a review, Chemosphere, 32 (1996) 609–626.
- S. Senthilkumaar, P. Kalaamani, K. Porkodi, P.R. Varadarajan,
C.V. Subburaam, Adsorption of dissolved reactive red dye
from aqueous phase onto activated carbon prepared from
agricultural waste, Bioresour. Technol., 97 (2006) 1618–1625.
- S. Lagergren, Zur theorie der sogenannten adsorption gelöster
stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar,
24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- V.C. Taty-Costodes, H. Fauduet, C. Porte, A. Delacroix, Removal
of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption
onto sawdust of Pinus sylvestris, J. Hazard. Mater., 105 (2003)
121–42.
- A.P. Olalekan, A.O. Dada, A.O. Okewale, Comparative
adsorption isotherm study of the removal of Pb2+ and Zn2+ onto
agricultural waste, Res. J. Chem. Environ. Sci., 1 (2013) 22–27.
- E.O. Augustine, Y.S. Ho, Effect of temperatures and pH
on methyl violet biosorption by Mansonia wood sawdust,
Bioresour. Technol., 99 (2008) 5411–5417.
- B. Radomir, J.M. Ljupković, R. Miljana, K. Miloš, B. Danijela,
M.S. Dragana-Linda, L.B. Aleksandar, Removal Cu(II) ions
from water using sulphuric acid treated Lagenaria vulgaris shell
(Cucurbitaceae), Biol. Nyssana, 2 (2011) 85–89.
- S. Goldberg, C.T. Johnston, Mechanisms of arsenic adsorption
on amorphous oxides evaluated using macroscopic measurements,
vibrational spectroscopy, and surface complexation
modeling, J. Colloid Interface Sci., 234 (2001) 204–216.
- D.G. Brookins, Eh-pH Diagrams for Geochemistry, Springer-Verlag, New York, 1988, p. 176.