References

  1. E.I. Ohimain, S.C. Izah, A review of biogas production from palm oil mill effluents using different configurations of bioreactors, Renewable Sustainable Energy Rev., 70 (2017) 242–253.
  2. B. Singh, Z. Szamosi, Z. Simenfalvi, State of the art on mixing in an anaerobic digester: a review, Renewable Energy, 141 (2019) 922–936.
  3. D.B. Wang, B.W. Liu, X.R. Liu, Q.X. Xu, Q. Yang, Y.W. Liu, How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge, Chemosphere, 206 (2018) 491–501.
  4. Y. Ueno, K. Yamada, N. Yoshida, S. Maruyama, Y. Isozaki, Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era, Nature, 440 (2006) 516–519.
  5. C. Pan, X.D. Fu, W.J. Lu, R. Ye, H.W. Guo, H.T. Wang, A. Chusov, Effects of conductive carbon materials on dry anaerobic digestion of sewage sludge: process and mechanism, J. Hazard. Mater., 384 (2019) 121339–121346.
  6. H. Hashemi, A. Ebrahimi, A. Khodabakhshi, Investigation of anaerobic biodegradability of real compost leachate emphasis on biogas harvesting, Int. J. Environ. Sci. Technol., 12 (2015) 2841–2846.
  7. S.M. Tauseef, T. Abbasi, S.A. Abbasi, Energy recovery from wastewaters with high-rate anaerobic digesters, Renewable Sustainable Energy Rev., 19 (2013) 704–741.
  8. I. Zeb, G.K. Kafle, X.Y. Xue, P.M. Ndegwa, Enhanced treatment of flush-dairy manure in anaerobic sequencing batch reactors using a cationic polymer, Biosyst. Eng., 186 (2019) 195–203.
  9. J. Ma, L. Yu, C. Frear, Q. Zhao, X. Li, S. Chen, Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure, Bioresour. Technol., 131 (2013) 6–12.
  10. A. Donoso-Bravo, F. Rosenkranz, V. Valdivia, G. Ruiz-Filippi, R. Chamy, Anaerobic sequencing batch reactor as an alternative for the biological treatment of wine distillery effluents, Water Sci. Technol., 60 (2009) 1155–1160.
  11. B.E. Öner, A.R. Akyol, M. Bozan, O. Ince, S. Aydin, Bioaugmentation with Clostridium thermocellum to enhance the anaerobic biodegradation of lignocellulosic agricultural residues, Bioresour. Technol., 249 (2017) 620–625.
  12. G.U. Semblante, F.I. Hai, X. Huang, A.S. Ball, W.E. Price, L.D. Nghiem, Trace organic contaminants in biosolids: impact of conventional wastewater and sludge processing technologies and emerging alternatives, J. Hazard. Mater., 300 (2015) 1–17.
  13. H.L. Tian, E. Mancini, L. Treu, I. Angelidaki, I.A. Fotidis, Bioaugmentation strategy for overcoming ammonia inhibition during biomethanation of a protein-rich substrate, Chemosphere, 231 (2019) 415–422.
  14. P. Lins, C. Reitschuler, P. Illmer, Methanosarcina spp., the key to relieve the start-up of a thermophilic anaerobic digestion suffering from high acetic acid loads, Bioresour. Technol., 152 (2014) 347–354.
  15. I.A. Fotidis, H. Wang, N.R. Fiedel, G. Luo, D.B. Karakashev, I. Angelidaki, Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate, Environ. Sci. Technol., 48 (2014) 7669–7676.
  16. S. Weiß, W. Somitsch, I. Klymiuk, S. Trajanoski, G.M. Guebitz, Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion, Bioresour. Technol. 207 (2016), 244–251.
  17. B. Schink, A.J.M. Stams, Syntrophism Among Prokaryotes. Springer, New York, 2006.
  18. B. Hooshyari, A. Azimi, N. Mehrdadi, Kinetic analysis of enhanced biological phosphorus removal in a hybrid integrated fixed film activated sludge process, Int. J. Environ. Sci. Technol., 6 (2009) 149–158.
  19. J.S. Maki, D.H. Zitomer, Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community, Water Res., 70 (2015) 138–147.
  20. T. Shimada, X. Li, J.L. Zilles, E. Morgenroth, L. Raskin, Effects of the antimicrobial tylosin on the microbial community structure of an anaerobic sequencing batch reactor, Biotechnol. Bioeng., 108 (2011) 296–305.
  21. J. Wang, Study on the Accumulation and Recovery of the Volatile Fatty Acid in the Anaerobic Sequencing Batch Reactor, Xi’an University of Architecture and Technology of China, 2007.
  22. F.R. Hawkes, R. Dinsdale, D.L. Hawkes, I. Hussy, Sustainable fermentative hydrogen production: challenges for process optimization, Int. J. Hydrogen Energy, 27 (2002) 1339–1347.
  23. A.F. Soomro, Z. Ni, L. Ying, J.G. Liu, The effect of ISR on OFMSW during acidogenic fermentation for the production of AD precursor: kinetics and synergies, RSC Adv., 9 (2019) 18147–18156.
  24. L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, 1998.
  25. G. Silvestre, A. Bonmatí, B. Fernández, Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: effect of collection system and particle size, Waste Manage., 43 (2015) 137–143.
  26. Y. Yu, C. Lee, J. Kim, S. Hwang, Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction, Biotechnol. Bioeng., 89 (2005) 670–679.
  27. S. Sawayama, K. Tsukahara, T. Yagishita, Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester, Bioresour. Technol., 97 (2006) 69–76.
  28. S. Sawayama, C. Tada, K. Tsukahara, T. Yagishita, Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion, J. Biosci. Bioeng., 97 (2004) 65–70.
  29. P.P. Mathai, D.H. Zitomer, J.S. Maki, Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments, Microbiology, 161 (2015) 1189–1197.
  30. C.R. Lovell, A.B. Leaphart, Community-level analysis: key genes of CO2-reductive acetogenesis, Methods Enzymol., 397 (2005) 454–469.
  31. X.W. Shao, D.C. Peng, Formation of granular sludge with filamentous microorganisms in anaerobic sequencing batch reactor (ASBR), J. Environ. Eng., 7 (2013) 468–472.
  32. L.T. Angenent, S.W. Sung, L. Raskin, Formation of granules and Methanosaeta fibres in an anaerobic migrating blanket reactor (AMBR), Environ. Microbiol., 6 (2004) 315–322.
  33. J.R. Sieber, M.J. Mcinerney, R.P. Gunsalus, Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation, Annu. Rev. Microbiol., 66 (2012) 429–452.
  34. F.A. De Bok, C.M. Plugge, A.J. Stams, Interspecies electron transfer in methanogenic propionate degrading consortia, Water Res., 38 (2004) 1368–1375.
  35. Y.P. Hou, D.C. Peng, B.B. Wang, X.Y. Zhang, L.Y. Pei, H.J. Li, Diagnosis of the acidification and recovery of anaerobic sequencing batch reactors, Desal. Wat. Treat., 56 (2015) 2368–2375.
  36. O.R. Kotsyurbenko, K.-J. Chin, M.V. Glagolev, S. Stubner, M.V. Simankova, A.N. Nozhevnikova, R. Conrad, Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog, Environ. Microbiol., 6 (2004) 1159–1173.
  37. S. Ali, B.B. Hua, J.J. Huang, R.L. Droste, Q.X. Zhou, W.X. Zhao, L. Chen, Effect of different initial low pH conditions on biogas production, composition, and shift in the aceticlastic methanogenic population, Bioresour. Technol., 289 (2019) 121579.