References

  1. M. Belaqziz, A. El-Abbassi, E.K. Lakhal, E. Agrafioti, C.M. Galanakis, Agronomic application of olive mill wastewater: effects on maize production and soil properties, J. Environ. Manage., 171 (2016) 158–165.
  2. V. Marsilio, L. Di Giovacchino, N. Costantini, M. Di Serio, R. Vito, Effect of the Olive Mill Wastewater (OMW) Spreading for Many Years on Olive Trees and Grapevine Cultivations, Proceeding of Second International Seminar on Biotechnology and Quality of Olive Tree Products Around the Mediterranean Basin, 2 (2006) 545–548.
  3. S. Ayoub, K. Al-Absi, S. Al-Shdiefat, D. Al-Majali, D. Hijazean, Effect of olive mill wastewater land-spreading on soil properties, olive tree performance and oil quality, Sci. Hortic., 175 (2014) 160–166.
  4. S. Bricha, K. Ounine, S. Oulkheir, N. El Haloui, B. Attarassi, Study of physico-chemical and bacteriological quality of the water table M’nasra, Kenitra, Morocco, Afr. Sci., 3 (2007) 391–404.
  5. D.G. Hole, A.J. Perkins, J.D. Wilson, I.H. Alexander, P.V. Grice, A.D. Evans, Does organic farming benefit biodiversity?, Biol. Conserv., 122 (2005) 113–130.
  6. T. Chatzistathis, T. Koutsos, Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems, Agric. Water Manage., 190 (2017) 55–64.
  7. Z. Mojerlou, A. Elhamirad, Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from olive cake, J. Food Sci. Technol., 55 (2018) 977–984.
  8. R. Ghanbari, F. Anwar, K.M. Alkharfy, A. Gilani, N. Saari, Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—a review, Int. J. Mol. Sci., 13 (2012) 3291–3340.
  9. T. Carlos, L.F. Roca, E. Alcantara, F.J. Lopez-Escudero, Colonization of olive inflorescences by Verticillium dahliae and its significance for pathogen spread, J. Phytopathol., 159 (2011) 638–640.
  10. L. Bargougui, Z. Guergueb, M. Chaieb, M. Braham, A. Mekki, Agro-physiological and biochemical responses of Sorghum bicolor in soil amended by olive mill wastewater, Agric. Water Manage., 212 (2019) 60–67.
  11. S. Magdich, C. Ben Ahmed, M. Boukhris, B. Ben Rouina, E. Ammar, Olive mill wastewater spreading effects on productivity and oil quality of adult chemlali olive (Olea europaea L.) in the South of Tunisia, Int. J. Agron. Agric. Res., 6 (2015) 65–67.
  12. M.H. Alu’datt, I. Alli, K. Ereifej, M. Alhamad, A.R. Al-Tawaha, T. Rababah, Optimisation, characterisation and quantification of phenolic compounds in olive cake, Food Chem., 123 (2010) 117–122.
  13. A.C. Barbera, C. Maucieri, V. Cavallaro, A. Ioppolo, G. Spagna, Effects of spreading olive mill wastewater on soil properties and crops, a review, Agric. Water Manage., 119 (2013) 43–53.
  14. F. Masi, R. Bresciani, G. Munz, C. Lubello, Evaporationcondensation of olive mill wastewater: evaluation of condensate treatability through SBR and constructed wetlands, Ecol. Eng., 80 (2015) 156–161.
  15. F. Hanafi, M. Mountadar, O. Assobhei, Combined Electrocoagulation and Fungal Processes for the Treatment of Olive Mill Wastewater, Fourteenth International Water Technology Conference (IWTC), Cairo, Egypt, 2010, pp. 269–281.
  16. W.K. Lafi, B. Shannak, M. Al-Shannag, Z. Al-Anber, M. Al-Hasan, Treatment of olive mill wastewater by combined advanced oxidation and biodegradation, Sep. Purif. Technol., 70 (2009) 141–146.
  17. A. El-Abbassi, M. Khayet, H. Kiai, A. Hafidi, M.C. García- Payo, Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation, Sep. Purif. Technol., 104 (2013) 327–332.
  18. I. El Mouhtadi, M. Agouzzal, G. François, Oil crops and supply chain in Africa, Oilseeds Fats Crops Lipids, 21 (2014) 21–23.
  19. H. Boutaj, A. Meddich, S. Wahbi, A. Moukhli, Z. El Alaoui-Talibi, A. Douira, A. Filali-Maltouf, C. El Modafar, Effect of Arbuscular mycorrhizal fungi on Verticillium wilt development of olive trees caused by Verticillium dahliae, Res. J. Biotechnol., 14 (2019) 79–88.
  20. B. Mechri, F. Ben Mariem, M. Baham, S. Ben Elhadj, M. Hammami, Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi, Soil Biol. Biochem., 40 (2008) 152–161.
  21. G. Ouzounidou, M. Asfi, N. Sotirakis, P. Papadopoulou, F. Gaitis, Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum Mill.) depending on growth substrate, J. Hazard. Mater., 158 (2008) 523–530.
  22. S. Magdich, W. Abid, M. Boukhris, B. Ben Rouina, E. Ammar, Effects of long-term olive mill wastewater spreading on the physiological and biochemical responses of adult Chemlali olive trees (Olea europaea L.), Ecol. Eng., 97 (2016) 122–129.
  23. I. Zipori, A. Dag, Y. Laor, G.J. Levy, H. Eizenberg, U. Yermiyahu, S. Medina, I. Saadi, A. Krasnovski, M. Raviv, Potential nutritional value of olive-mill wastewater applied to irrigated olive (Olea europaea L.) orchard in a semi-arid environment over 5 years, Sci. Hortic., 24 (2018) 1218–1224.
  24. A. Raklami, N. Bechtaoui, A. Tahiri, M. Anli, A. Meddich, K. Oufdou, Use of Rhizobacteria and Mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility, Front. Microbiol., 10 (2019) 1106.
  25. S.R. Olsen, C.V. Cole, F.S. Watanabe, L.A. Dean, Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate, United States Department of Agriculture (USDA) Circ. 939. US Government Printing Office, Washington, D.C., 1954, p. 939.
  26. M.L. Jackson, Soil Chemical Analysis, Prentice Hall Inc., Englewood Cliffs, 1960, pp. 151–154.
  27. A. El-Abbassi, M. Khayet, A. Hafidi, Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater, Water Res., 45 (2011) 4522–4530.
  28. J.D. Brown, O. Lilleland, Uptake determination of potassium and sodium in plant material and soil extracts by flame photometry, Proc. Am. Soc., 48 (1946) 341–346.
  29. J.L. Jifon, J.P. Syvertsen, Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves., Tree Physiol., 23 (2003) 119–127.
  30. J.F. Shanahan, I.B. Edwards, J.S. Quick, J.R. Fenwick, Membrane thermostability and heat tolerance of spring wheat, Crop Sci., 30 (1990) 247–251.
  31. A.A.H. Abdel Latef, H. Chaoxing, Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress, Sci. Hortic., 127 (2011) 228–233.
  32. N.A. Tejera, R. Campos, J. Sanjuan, C. Lluch, Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropid isogenic strains with varying tolerance to salt stress, J. Plant Physiol., 161 (2004) 329.
  33. K. Hori, A. Wada, T. Shibuta, Changes in phenoloxidase activities of the galls on leaves of Ulmus davidana formed by Tetraneura fuslformis (Homoptera: eriosomatidae), Appl. Entomol. Zool., 32 (1997) 365–371.
  34. H. Aebi, [13] Catalase in vitro, Methods Enzymol., 105 (1984) 121–126.
  35. M.M. Bradford, A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding, Anal. Biochem., 72 (1976) 248–254.
  36. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods Enzymol., 299 (1999) 152–178.
  37. V. Velikova, I. Yordanov, A. Edreva, Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines, Plant Sci., 151 (2000) 59–66.
  38. R.L. Heath, L. Packer, Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 125 (1968) 189–198.
  39. P. Loveland, J. Webb, Is there a critical level of organic matter in the agricultural soils of temperate regions: a review, Soil Tillage Res., 70 (2003) 1–18.
  40. C.K. Johnson, D.A. Mortensen, B.J. Wienhold, J.F. Shanahan, J.W. Doran, Site-specific management zones based on soil electrical conductivity in a semiarid cropping system, Agron. J., 95 (2003) 303–315.
  41. J.M. Ochando-Pulido, R. Fragoso, A. Macedo, E. Duarte, A.M. Ferez, A Brief Review on Recent Processes for the Treatment of Olive Mill Effluents, Products from Olive Tree, (2016) 283–300, http://dx.doi.org/10.5772/64798.
  42. H. Zbakh, A. El Abbassi, Potential use of olive mill wastewater in the preparation of functional beverages: a review, J. Funct. Foods, 4 (2012) 53–65.
  43. A. El-Abbassi, N. Saadaoui, H. Kiai, J. Raiti, A. Hafidi, Potential applications of olive mill wastewater as biopesticide for crops protection, Sci. Total Environ., 576 (2017) 10–21.
  44. J. Sierra, E. Martí, G. Montserrat, R. Cruaáas, M.A. Garau, Characterisation and evolution of a soil affected by olive oil mill wastewater disposal, Sci. Total Environ., 279 (2001) 207–214.
  45. A. Piotrowska, G. Iamarino, M.A. Rao, L. Gianfreda, Shortterm effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil, Soil Biol. Biochem., 38 (2006) 600–610.
  46. X. Hao, F.J. Larney, C. Chang, G.R. Travis, C.K. Nichol, E. Bremer, The effect of phosphogypsum on greenhouse gas emissions during cattle manure composting, J. Environ. Qual., 34 (2005) 774–781.
  47. A. Mekki, A. Dhouib, S. Sayadi, Review: Effects of olive mill wastewater application on soil properties and plants growth, Int. J. Recycl. Org. Waste Agric., 2 (2013) 15.
  48. H. Al-Imoor, I. Raed, H.Z. Husam, Z. Oday, Z. Motasem, Germination of seeds grown on medium from olive mill liquid waste, olive mill pomace, and stone sludge waste, Chem. Mater. Res., 9 (2017) 10.
  49. K. Komnitsas, D. Zaharaki, Pre-treatment of olive mill wastewaters at laboratory and mill scale and subsequent use in agriculture: legislative framework and proposed soil quality indicators, Resour. Conserv. Recycl., 69 (2012) 82–89.
  50. K. Chartzoulakis, G. Psarras, M. Moutsopoulou, E. Stefanoudaki, Application of olive mill wastewater to a Cretan olive orchard: effects on soil properties, plant performance and the environment, Agric. Ecosyst. Environ., 138 (2010) 293–298.
  51. K. Gargouri, M. Masmoudi, A. Rhouma, Influence of olive mill wastewater (OMW) spread on carbon and nitrogen dynamics and biology of an arid sandy soil, Commun. Soil Sci. Plant Anal., 45 (2014) 1–14.
  52. N.P.A. Huner, D.P. Maxwell, G.R. Gray, L. V. Savitch, M. Krol, A.G. Ivanov, S. Falk, Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of photosystem II, Physiol. Plant., 98 (1996) 358–364.
  53. G. Ouzounidou, M. Moustakas, R.J. Strasser, Sites of action of copper in the photosynthetic apparatus of maize leaves: kinetic analysis of chlorophyll fluorescence, oxygen evolution, absorption changes and thermal dissipation as monitored by photoacoustic signals, Aust. J. Plant Physiol., 24 (1997) 81–90.
  54. A. Chakhchar, M. Lamaoui, S. Wahbi, A. Ferradous, A. El Mousadik, S. Ibnsouda-Koraichi, A. Filali-Maltouf, C. El Modafar, Leaf water status, osmoregulation and secondary metabolism as a model for depicting drought tolerance in Argania spinosa, Acta Physiol. Plant., 37 (2015) 80.
  55. S. Jung, Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought, Plant Sci., 166 (2004) 459–466.
  56. C.H. Foyer, Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses, Plant Cell, 17 (2005) 1866–1875.
  57. M.O. Fouad, A. Essahibi, L. Benhiba, A. Qaddoury, Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought, Span. J. Agric. Res., 12 (2014) 763–771.
  58. M. Mirzaee, A. Moieni, F. Ghanati, Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars, J. Agric. Sci. Technol., 15 (2013) 593–602.
  59. A. Essahibi, L. Benhiba, M.A. Babram, C. Ghoulam, A. Qaddoury, Influence of arbuscular mycorrhizal fungi on the functional mechanisms associated with drought tolerance in carob (Ceratonia siliqua L.), Trees, 32 (2018) 87–97.
  60. A. Chakhchar, A. Ferradous, M. Lamaoui, S. Wahbi, C. El Modafar, Changes in antioxidant enzymes activity and oxidative damage in four Argania spinosa ecotypes under water stress conditions, Nat. Proc., (2011) 1–1, doi: 10.1038/npre.2011.6189.
  61. Z.J. Liu, X.L. Zhang, J.G. Bai, B.X. Suo, P.L. Xu, L. Wang, Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves, Sci. Hortic., 121 (2009) 138–143.
  62. S.S. Gill, N. Tuteja, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 48 (2010) 909–930.
  63. S. Pyngrope, K. Bhoomika, R.S. Dubey, Oxidative stress, protein carbonylation, proteolysis and antioxidative defense system as a model for depicting water deficit tolerance in Indica rice seedlings, Plant Growth Regul., 69 (2013) 149–165.
  64. J. Jiang, M. Su, Y. Chen, N. Gao, C. Jiao, Z. Sun, F. Li, C. Wang, Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment, Biologia, 68 (2013) 231–240.
  65. A. Chakhchar, S. Wahbi, M. Lamaoui, A. Ferradous, A. El Mousadik, S. Ibnsouda-Koraichi, A. Filali-Maltouf, C. El Modafar, Physiological and biochemical traits of drought tolerance in Argania spinosa, J. Plant Interact., 10 (2015) 252–261.