References
- M. Belaqziz, A. El-Abbassi, E.K. Lakhal, E. Agrafioti,
C.M. Galanakis, Agronomic application of olive mill wastewater:
effects on maize production and soil properties,
J. Environ. Manage., 171 (2016) 158–165.
- V. Marsilio, L. Di Giovacchino, N. Costantini, M. Di Serio,
R. Vito, Effect of the Olive Mill Wastewater (OMW) Spreading
for Many Years on Olive Trees and Grapevine Cultivations,
Proceeding of Second International Seminar on Biotechnology
and Quality of Olive Tree Products Around the Mediterranean
Basin, 2 (2006) 545–548.
- S. Ayoub, K. Al-Absi, S. Al-Shdiefat, D. Al-Majali, D. Hijazean,
Effect of olive mill wastewater land-spreading on soil properties,
olive tree performance and oil quality, Sci. Hortic., 175 (2014)
160–166.
- S. Bricha, K. Ounine, S. Oulkheir, N. El Haloui, B. Attarassi,
Study of physico-chemical and bacteriological quality of
the water table M’nasra, Kenitra, Morocco, Afr. Sci., 3 (2007)
391–404.
- D.G. Hole, A.J. Perkins, J.D. Wilson, I.H. Alexander, P.V. Grice,
A.D. Evans, Does organic farming benefit biodiversity?,
Biol. Conserv., 122 (2005) 113–130.
- T. Chatzistathis, T. Koutsos, Olive mill wastewater as a source of
organic matter, water and nutrients for restoration of degraded
soils and for crops managed with sustainable systems, Agric.
Water Manage., 190 (2017) 55–64.
- Z. Mojerlou, A. Elhamirad, Optimization of ultrasound-assisted
extraction (UAE) of phenolic compounds from olive cake,
J. Food Sci. Technol., 55 (2018) 977–984.
- R. Ghanbari, F. Anwar, K.M. Alkharfy, A. Gilani, N. Saari,
Valuable nutrients and functional bioactives in different parts
of olive (Olea europaea L.)—a review, Int. J. Mol. Sci., 13 (2012)
3291–3340.
- T. Carlos, L.F. Roca, E. Alcantara, F.J. Lopez-Escudero,
Colonization of olive inflorescences by Verticillium dahliae and
its significance for pathogen spread, J. Phytopathol., 159 (2011)
638–640.
- L. Bargougui, Z. Guergueb, M. Chaieb, M. Braham, A. Mekki,
Agro-physiological and biochemical responses of Sorghum
bicolor in soil amended by olive mill wastewater, Agric. Water
Manage., 212 (2019) 60–67.
- S. Magdich, C. Ben Ahmed, M. Boukhris, B. Ben Rouina,
E. Ammar, Olive mill wastewater spreading effects on productivity
and oil quality of adult chemlali olive (Olea europaea L.) in
the South of Tunisia, Int. J. Agron. Agric. Res., 6 (2015) 65–67.
- M.H. Alu’datt, I. Alli, K. Ereifej, M. Alhamad, A.R. Al-Tawaha,
T. Rababah, Optimisation, characterisation and quantification
of phenolic compounds in olive cake, Food Chem., 123 (2010)
117–122.
- A.C. Barbera, C. Maucieri, V. Cavallaro, A. Ioppolo, G. Spagna,
Effects of spreading olive mill wastewater on soil properties
and crops, a review, Agric. Water Manage., 119 (2013) 43–53.
- F. Masi, R. Bresciani, G. Munz, C. Lubello, Evaporationcondensation
of olive mill wastewater: evaluation of condensate
treatability through SBR and constructed wetlands, Ecol. Eng.,
80 (2015) 156–161.
- F. Hanafi, M. Mountadar, O. Assobhei, Combined Electrocoagulation
and Fungal Processes for the Treatment of Olive
Mill Wastewater, Fourteenth International Water Technology
Conference (IWTC), Cairo, Egypt, 2010, pp. 269–281.
- W.K. Lafi, B. Shannak, M. Al-Shannag, Z. Al-Anber, M. Al-Hasan,
Treatment of olive mill wastewater by combined advanced oxidation
and biodegradation, Sep. Purif. Technol., 70 (2009) 141–146.
- A. El-Abbassi, M. Khayet, H. Kiai, A. Hafidi, M.C. García-
Payo, Treatment of crude olive mill wastewaters by osmotic
distillation and osmotic membrane distillation, Sep. Purif.
Technol., 104 (2013) 327–332.
- I. El Mouhtadi, M. Agouzzal, G. François, Oil crops and supply
chain in Africa, Oilseeds Fats Crops Lipids, 21 (2014) 21–23.
- H. Boutaj, A. Meddich, S. Wahbi, A. Moukhli, Z. El Alaoui-Talibi, A. Douira, A. Filali-Maltouf, C. El Modafar, Effect of
Arbuscular mycorrhizal fungi on Verticillium wilt development
of olive trees caused by Verticillium dahliae, Res. J. Biotechnol.,
14 (2019) 79–88.
- B. Mechri, F. Ben Mariem, M. Baham, S. Ben Elhadj,
M. Hammami, Change in soil properties and the soil microbial
community following land spreading of olive mill wastewater
affects olive trees key physiological parameters and the
abundance of arbuscular mycorrhizal fungi, Soil Biol. Biochem.,
40 (2008) 152–161.
- G. Ouzounidou, M. Asfi, N. Sotirakis, P. Papadopoulou,
F. Gaitis, Olive mill wastewater triggered changes in physiology
and nutritional quality of tomato (Lycopersicon esculentum Mill.)
depending on growth substrate, J. Hazard. Mater., 158 (2008)
523–530.
- S. Magdich, W. Abid, M. Boukhris, B. Ben Rouina, E. Ammar,
Effects of long-term olive mill wastewater spreading on the
physiological and biochemical responses of adult Chemlali
olive trees (Olea europaea L.), Ecol. Eng., 97 (2016) 122–129.
- I. Zipori, A. Dag, Y. Laor, G.J. Levy, H. Eizenberg, U. Yermiyahu,
S. Medina, I. Saadi, A. Krasnovski, M. Raviv, Potential
nutritional value of olive-mill wastewater applied to irrigated
olive (Olea europaea L.) orchard in a semi-arid environment over
5 years, Sci. Hortic., 24 (2018) 1218–1224.
- A. Raklami, N. Bechtaoui, A. Tahiri, M. Anli, A. Meddich,
K. Oufdou, Use of Rhizobacteria and Mycorrhizae consortium in the open field as a strategy for improving crop nutrition,
productivity and soil fertility, Front. Microbiol., 10 (2019)
1106.
- S.R. Olsen, C.V. Cole, F.S. Watanabe, L.A. Dean, Estimation
of Available Phosphorus in Soils by Extraction with Sodium
Bicarbonate, United States Department of Agriculture (USDA)
Circ. 939. US Government Printing Office, Washington, D.C.,
1954, p. 939.
- M.L. Jackson, Soil Chemical Analysis, Prentice Hall Inc.,
Englewood Cliffs, 1960, pp. 151–154.
- A. El-Abbassi, M. Khayet, A. Hafidi, Micellar enhanced
ultrafiltration process for the treatment of olive mill wastewater,
Water Res., 45 (2011) 4522–4530.
- J.D. Brown, O. Lilleland, Uptake determination of potassium
and sodium in plant material and soil extracts by flame
photometry, Proc. Am. Soc., 48 (1946) 341–346.
- J.L. Jifon, J.P. Syvertsen, Moderate shade can increase net gas
exchange and reduce photoinhibition in citrus leaves., Tree
Physiol., 23 (2003) 119–127.
- J.F. Shanahan, I.B. Edwards, J.S. Quick, J.R. Fenwick, Membrane
thermostability and heat tolerance of spring wheat, Crop Sci.,
30 (1990) 247–251.
- A.A.H. Abdel Latef, H. Chaoxing, Effect of arbuscular
mycorrhizal fungi on growth, mineral nutrition, antioxidant
enzymes activity and fruit yield of tomato grown under salinity
stress, Sci. Hortic., 127 (2011) 228–233.
- N.A. Tejera, R. Campos, J. Sanjuan, C. Lluch, Nitrogenase and
antioxidant enzyme activities in Phaseolus vulgaris nodules
formed by Rhizobium tropid isogenic strains with varying
tolerance to salt stress, J. Plant Physiol., 161 (2004) 329.
- K. Hori, A. Wada, T. Shibuta, Changes in phenoloxidase
activities of the galls on leaves of Ulmus davidana formed
by Tetraneura fuslformis (Homoptera: eriosomatidae), Appl.
Entomol. Zool., 32 (1997) 365–371.
- H. Aebi, [13] Catalase in vitro, Methods Enzymol., 105 (1984)
121–126.
- M.M. Bradford, A rapid and sensitive method for quantitation
of microgram quantities of protein utilizing the principle of
protein-dye-binding, Anal. Biochem., 72 (1976) 248–254.
- V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Analysis of
total phenols and other oxidation substrates and antioxidants by
means of folin-ciocalteu reagent, Methods Enzymol., 299 (1999)
152–178.
- V. Velikova, I. Yordanov, A. Edreva, Oxidative stress and
some antioxidant systems in acid rain-treated bean plants
protective role of exogenous polyamines, Plant Sci., 151 (2000)
59–66.
- R.L. Heath, L. Packer, Photoperoxidation in isolated chloroplasts:
I. Kinetics and stoichiometry of fatty acid peroxidation, Arch.
Biochem. Biophys., 125 (1968) 189–198.
- P. Loveland, J. Webb, Is there a critical level of organic matter in
the agricultural soils of temperate regions: a review, Soil Tillage
Res., 70 (2003) 1–18.
- C.K. Johnson, D.A. Mortensen, B.J. Wienhold, J.F. Shanahan,
J.W. Doran, Site-specific management zones based on soil
electrical conductivity in a semiarid cropping system, Agron. J.,
95 (2003) 303–315.
- J.M. Ochando-Pulido, R. Fragoso, A. Macedo, E. Duarte, A.M.
Ferez, A Brief Review on Recent Processes for the Treatment of
Olive Mill Effluents, Products from Olive Tree, (2016) 283–300,
http://dx.doi.org/10.5772/64798.
- H. Zbakh, A. El Abbassi, Potential use of olive mill wastewater
in the preparation of functional beverages: a review, J. Funct.
Foods, 4 (2012) 53–65.
- A. El-Abbassi, N. Saadaoui, H. Kiai, J. Raiti, A. Hafidi, Potential
applications of olive mill wastewater as biopesticide for crops
protection, Sci. Total Environ., 576 (2017) 10–21.
- J. Sierra, E. Martí, G. Montserrat, R. Cruaáas, M.A. Garau,
Characterisation and evolution of a soil affected by olive
oil mill wastewater disposal, Sci. Total Environ., 279 (2001)
207–214.
- A. Piotrowska, G. Iamarino, M.A. Rao, L. Gianfreda, Shortterm
effects of olive mill waste water (OMW) on chemical and
biochemical properties of a semiarid Mediterranean soil, Soil
Biol. Biochem., 38 (2006) 600–610.
- X. Hao, F.J. Larney, C. Chang, G.R. Travis, C.K. Nichol,
E. Bremer, The effect of phosphogypsum on greenhouse gas
emissions during cattle manure composting, J. Environ. Qual.,
34 (2005) 774–781.
- A. Mekki, A. Dhouib, S. Sayadi, Review: Effects of olive mill
wastewater application on soil properties and plants growth,
Int. J. Recycl. Org. Waste Agric., 2 (2013) 15.
- H. Al-Imoor, I. Raed, H.Z. Husam, Z. Oday, Z. Motasem,
Germination of seeds grown on medium from olive mill liquid
waste, olive mill pomace, and stone sludge waste, Chem. Mater.
Res., 9 (2017) 10.
- K. Komnitsas, D. Zaharaki, Pre-treatment of olive mill wastewaters
at laboratory and mill scale and subsequent use in
agriculture: legislative framework and proposed soil quality
indicators, Resour. Conserv. Recycl., 69 (2012) 82–89.
- K. Chartzoulakis, G. Psarras, M. Moutsopoulou, E. Stefanoudaki,
Application of olive mill wastewater to a Cretan olive
orchard: effects on soil properties, plant performance and the
environment, Agric. Ecosyst. Environ., 138 (2010) 293–298.
- K. Gargouri, M. Masmoudi, A. Rhouma, Influence of olive mill
wastewater (OMW) spread on carbon and nitrogen dynamics
and biology of an arid sandy soil, Commun. Soil Sci. Plant
Anal., 45 (2014) 1–14.
- N.P.A. Huner, D.P. Maxwell, G.R. Gray, L. V. Savitch, M. Krol,
A.G. Ivanov, S. Falk, Sensing environmental temperature
change through imbalances between energy supply and energy
consumption: redox state of photosystem II, Physiol. Plant.,
98 (1996) 358–364.
- G. Ouzounidou, M. Moustakas, R.J. Strasser, Sites of action
of copper in the photosynthetic apparatus of maize leaves:
kinetic analysis of chlorophyll fluorescence, oxygen evolution,
absorption changes and thermal dissipation as monitored by
photoacoustic signals, Aust. J. Plant Physiol., 24 (1997) 81–90.
- A. Chakhchar, M. Lamaoui, S. Wahbi, A. Ferradous, A. El
Mousadik, S. Ibnsouda-Koraichi, A. Filali-Maltouf, C. El
Modafar, Leaf water status, osmoregulation and secondary
metabolism as a model for depicting drought tolerance in
Argania spinosa, Acta Physiol. Plant., 37 (2015) 80.
- S. Jung, Variation in antioxidant metabolism of young and
mature leaves of Arabidopsis thaliana subjected to drought,
Plant Sci., 166 (2004) 459–466.
- C.H. Foyer, Redox homeostasis and antioxidant signaling: a
metabolic interface between stress perception and physiological
responses, Plant Cell, 17 (2005) 1866–1875.
- M.O. Fouad, A. Essahibi, L. Benhiba, A. Qaddoury, Effectiveness
of arbuscular mycorrhizal fungi in the protection of olive plants
against oxidative stress induced by drought, Span. J. Agric.
Res., 12 (2014) 763–771.
- M. Mirzaee, A. Moieni, F. Ghanati, Effects of drought stress
on the lipid peroxidation and antioxidant enzyme activities in
two canola (Brassica napus L.) cultivars, J. Agric. Sci. Technol.,
15 (2013) 593–602.
- A. Essahibi, L. Benhiba, M.A. Babram, C. Ghoulam,
A. Qaddoury, Influence of arbuscular mycorrhizal fungi on the
functional mechanisms associated with drought tolerance in
carob (Ceratonia siliqua L.), Trees, 32 (2018) 87–97.
- A. Chakhchar, A. Ferradous, M. Lamaoui, S. Wahbi, C. El
Modafar, Changes in antioxidant enzymes activity and oxidative
damage in four Argania spinosa ecotypes under water stress
conditions, Nat. Proc., (2011) 1–1, doi: 10.1038/npre.2011.6189.
- Z.J. Liu, X.L. Zhang, J.G. Bai, B.X. Suo, P.L. Xu, L. Wang,
Exogenous paraquat changes antioxidant enzyme activities
and lipid peroxidation in drought-stressed cucumber leaves,
Sci. Hortic., 121 (2009) 138–143.
- S.S. Gill, N. Tuteja, Reactive oxygen species and antioxidant
machinery in abiotic stress tolerance in crop plants, Plant
Physiol. Biochem., 48 (2010) 909–930.
- S. Pyngrope, K. Bhoomika, R.S. Dubey, Oxidative stress, protein
carbonylation, proteolysis and antioxidative defense system
as a model for depicting water deficit tolerance in Indica rice
seedlings, Plant Growth Regul., 69 (2013) 149–165.
- J. Jiang, M. Su, Y. Chen, N. Gao, C. Jiao, Z. Sun, F. Li, C. Wang,
Correlation of drought resistance in grass pea (Lathyrus
sativus) with reactive oxygen species scavenging and osmotic
adjustment, Biologia, 68 (2013) 231–240.
- A. Chakhchar, S. Wahbi, M. Lamaoui, A. Ferradous, A. El
Mousadik, S. Ibnsouda-Koraichi, A. Filali-Maltouf, C. El
Modafar, Physiological and biochemical traits of drought
tolerance in Argania spinosa, J. Plant Interact., 10 (2015) 252–261.