References
- E. Eriksson, N. Christensen, J. Ejbye Schmidt, A. Ledin, Potential
priority pollutants in sewage sludge, Desalination, 226 (2008)
371–388.
- A. Rosinska, 19 – Traditional Contaminants in Sludge, Industrial
and Municipal Sludge Emerging Concerns and Scope for
Resource Recovery, 2019, pp. 425–453, https://doi.org/10.1016/
B978-0-12-815907-1.00019-2..
- J. Lederer, H. Rechberger, Comparative goal-oriented assessment
of conventional and alternative sewage sludge treatment
options, Waste Manage., 30 (2010) 1403–1056.
- A. Hospido, M. Carballa, M. Moreira, F. Omil, J.M. Lema,
G. Feijoo, Environmental assessment of anaerobically digested
sludge reuse in agriculture: potential impacts of emerging
micropollutants, Water Res., 44 (2010) 3225–3233.
- A. Raheem, V.S. Sikarwar, J. He, W. Dastyar, D.D. Dionysiou,
W. Wang, M. Zhao, Opportunities and challenges in sustainable
treatment and resource reuse of sewage sludge: a review, Chem.
Eng. J., 337 (2018) 616–641.
- Y. Cao, A. Pawłowski, Sewage sludge-to-energy approaches
based on anaerobic digestion and pyrolysis: brief overview and
energy efficiency assessment, Renewable Sustainable Energy
Rev., 16 (2012) 1657–1665.
- M. Kacprzak, E. Neczaj, K. Fijałkowski, A. Grobelak, A. Grosser,
M. Worwag, A. Rorat, H. Brattebo, A. Almås, B. Ram Singh,
Sewage sludge disposal strategies for sustainable development,
Environ. Res., 156 (2017) 39–46.
- A. Tsybina, C. Wuensch, Analysis of sewage sludge thermal
treatment methods in the context of circular economy, Detritus,
2 (2018) 3–15.
- M. Braungart, W. McDonough, A. Bollinger, Cradle-to-cradle
design: creating healthy emissions – a strategy for ecoeffective
product and system design, J. Cleaner Prod., 15 (2007)
1337–1348.
- http://ec.europa.eu/environment/circular-economy/index_en.htm
- X. You, C. Valderrama, J.L. Cortina, Nutrients recovery from
treated secondary mainstream in an urban wastewater treatment
plant: a financial assessment case study, Sci. Total Environ.,
656 (2019) 902–909.
- COM (2016) 157.
- Eurostat, Sewage Sludge Production and Disposal, https://
ec.europa.eu/eurostat/web/products-datasets/.
- S. Werle, Sewage sludge-to-energy management in Eastern
Europe: a Polish perspective, Ecol. Chem. Eng. Sci., 22 (2015)
459–469.
- T. Murakami, Y. Suzuki, H. Nagasawa, T. Yamamoto, T. Koseki,
H. Hirose, S. Okamoto, Combustion characteristics of sewage
sludge in an incineration plant for energy recovery, Fuel
Process. Technol., 90 (2009) 778–783.
- A.G. Gorgec, G. Insel, N. Yagci, M. Dogru, A. Erdinçler, D. Sanin,
A. Filibeli, B. Keskinler, E. Cokgor, Comparison of energy
efficiencies for advanced anaerobic digestion, incineration,
and gasification processes in municipal sludge management,
J. Residuals Sci. Technol., 13 (2016) 57–64.
- E. Roche, J.M. de Andres, A. Narros, M.E. Rodríguez, Air
and air-steam gasification of sewage sludge. The influence of
dolomite and throughput in tar production and composition,
Fuel, 115 (2014) 54–61.
- N. Nipattummakul, I.I. Ahmed, S. Kerdsuwan, A.K. Gupta,
Hydrogen and syngas production from sewage sludge via
steam gasification, Int. J. Hydrogen Energy, 35 (2010)
11738–11745.
- S. Werle, S. Sobek, Gasification of sewage sludge within a
circular economy perspective: a Polish case study, Environ. Sci.
Pollut. Res., 26 (2019) 1–11
- M. Atienza-Martínez, I. Rubio, I. Fontsa, J. Ceamanosa, G. Gea,
Effect of torrefaction on the catalytic post-treatment of sewage
sludge pyrolysis vapors using γ-Al2O3, Chem. Eng. J., 308 (2017)
264–274.
- J.D. Bien, Management of sewage sludge by thermal methods,
Eng. Protect. Environ., 4 (2012) 439–449 (in Polish).
- A. Xiaojuan, L. Weijun, Review on sludge drying process
and dryer in solar energy, Am. J. Energy Eng., 5 (2017) 34–38.
- Global Atlas of Excreta, Wastewater Sludge, and Biosolids
Management: Moving Forward the Sustainable and Welcome
Uses of a Global Resource, Un-Habitat, 2008.
- D. Orhon, N. Artan, Modelling of Activated Sludge Systems,
Technomic Publishing Co. Inc., Lancaster, PA, 1994, pp. 39–110.
- M. Huazhen, W. Fei, M. Feiyan, C. Yong, Measurent of water
content and moisture distribution in sludge by 1H nuclear
magnetic resonance spectroscopy, Drying Technol., 24 (2016)
267–274.
- J.P. der Hoek, H. Fooij, A. Struker, Wastewater as a resource:
strategies to recover resources from Amsterdam’s wastewater,
Resour. Conserv. Recycl., 113 (2016) 53–64.
- K. Fijalkowski, A. Rorat, A. Grobelak, M.J. Kacprzak, The
presence of contaminations in sewage sludge - The current
situation, J. Environ. Manage., 203 (2017) 1126–1136.
- V.K. Tyagi, S.L. Lo, Sludge: a waste or renewable source for
energy and resources recovery?, Renewable Sustainable Energy
Rev., 25 (2013) 708–772.
- COM (2016) 157, 2016/0084 (COD) Political Agreement Reached
on 12 December 2018, Available at: http://europa.eu/rapid/press-release_IP-18-6161_en.htm.
- M. Worwag, Recovery of phosphorus as struvite from sewage
sludge and sewage sludge ash, Desal. Wat. Treat., 134 (2018)
121–127.
- G.C. Becker, D. Wüst, H. Köhler, A. Lautenbach, A. Kruse, Novel
approach of phosphate-reclamation as struvite from sewage
sludge by utilising hydrothermal carbonization, J. Environ.
Manage., 238 (2019) 119–125.
- Z. Wzorek, M. Jodko, K. Gorazda, T. Rzepecki, Extraction of
phosphorus compounds from ashes from thermal processing of
sewage sludge, J. Loss Prevent. Process Ind., 19 (2006) 39–50.
- R. Li, W. Teng, Y. Li, W. Wang, R. Cui, T. Yang, Potential recovery
of phosphorus during the fluidized bed incineration of sewage
sludge, J. Cleaner Prod., 140 (2017) 964–970.
- H. Weigand, M. Bertau, W. Hübner, F. Bohndick, A. Bruckert,
RecoPhos: full-scale fertilizer production from sewage sludge
ash, Waste Manage., 33 (2013) 540–544.
- B. Cieslik, P. Konieczka, A review of phosphorus recovery
methods at various steps of wastewater treatment and sewage
sludge management. The concept of “no solid waste generation”
and analytical methods, J. Cleaner Prod., 142 (2017) 1728–1740.
- C. Adam, B. Peplinski, M. Michaelis, G. Kleya, F.G. Simon,
Thermochemical treatment of sewage sludge ashes for phosphorus
recovery, Waste Manage., 29 (2009) 1122–1128.
- H. Yuan, H. Lu, T. Wang, Y. Chen, T. Lei, Sewage sludge
biochar: nutrient composition and its effect on the leaching of
soil nutrients, Geoderma, 267 (2016) 17–23.
- E. Amonette, S. Joseph, S. Joseph. Characteristics of Biochar:
Microchemical Properties, J. Lehmann, Ed., Biochar for Environmental
Management: Science and Technology, Earthscan,
London, 2009, pp. 33–52.
- Y.K. Chan, Z. Xu, Biochar: Nutrient Properties and their
Enhancement, J. Lehmann, S. Joseph, Eds., Biochar for Environmental
Management: Science and Technology, Earthscan,
London, 2009, pp. 67–84.
- A. Kijo-Kleczkowska, K. Środa, M. Kosowska-Golachowska,
T. Musiał, K. Wolski, Mechanisms and kinetics of granulated
sewage sludge combustion, Waste Manage., 46 (2015) 459–471.
- R. Cano, S.I. Pérez-Elvira, F. Fdz-Polanco, Energy feasibility
study of sludge pre-treatments: a review, Appl. Energy,
149 (2015) 176–185.
- P.H. Brunner, H. Rechberger, Waste to energy – key element for
sustainable waste management, Waste Manage., 37 (2015) 3–12.
- A. Ostojski, M. Swinarski, The importance of the energy
potential of sewage sludge in the aspect of the circular economy -
an example of a sewage treatment plant in Gdańsk, Annual Set
Environ. Protect., 20 (2018) 1252–1268 (in Polish).