References

  1. E. Eriksson, N. Christensen, J. Ejbye Schmidt, A. Ledin, Potential priority pollutants in sewage sludge, Desalination, 226 (2008) 371–388.
  2. A. Rosinska, 19 – Traditional Contaminants in Sludge, Industrial and Municipal Sludge Emerging Concerns and Scope for Resource Recovery, 2019, pp. 425–453, https://doi.org/10.1016/ B978-0-12-815907-1.00019-2..
  3. J. Lederer, H. Rechberger, Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options, Waste Manage., 30 (2010) 1403–1056.
  4. A. Hospido, M. Carballa, M. Moreira, F. Omil, J.M. Lema, G. Feijoo, Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants, Water Res., 44 (2010) 3225–3233.
  5. A. Raheem, V.S. Sikarwar, J. He, W. Dastyar, D.D. Dionysiou, W. Wang, M. Zhao, Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review, Chem. Eng. J., 337 (2018) 616–641.
  6. Y. Cao, A. Pawłowski, Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment, Renewable Sustainable Energy Rev., 16 (2012) 1657–1665.
  7. M. Kacprzak, E. Neczaj, K. Fijałkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, A. Almås, B. Ram Singh, Sewage sludge disposal strategies for sustainable development, Environ. Res., 156 (2017) 39–46.
  8. A. Tsybina, C. Wuensch, Analysis of sewage sludge thermal treatment methods in the context of circular economy, Detritus, 2 (2018) 3–15.
  9. M. Braungart, W. McDonough, A. Bollinger, Cradle-to-cradle design: creating healthy emissions – a strategy for ecoeffective product and system design, J. Cleaner Prod., 15 (2007) 1337–1348.
  10. http://ec.europa.eu/environment/circular-economy/index_en.htm
  11. X. You, C. Valderrama, J.L. Cortina, Nutrients recovery from treated secondary mainstream in an urban wastewater treatment plant: a financial assessment case study, Sci. Total Environ., 656 (2019) 902–909.
  12. COM (2016) 157.
  13. Eurostat, Sewage Sludge Production and Disposal, https:// ec.europa.eu/eurostat/web/products-datasets/.
  14. S. Werle, Sewage sludge-to-energy management in Eastern Europe: a Polish perspective, Ecol. Chem. Eng. Sci., 22 (2015) 459–469.
  15. T. Murakami, Y. Suzuki, H. Nagasawa, T. Yamamoto, T. Koseki, H. Hirose, S. Okamoto, Combustion characteristics of sewage sludge in an incineration plant for energy recovery, Fuel Process. Technol., 90 (2009) 778–783.
  16. A.G. Gorgec, G. Insel, N. Yagci, M. Dogru, A. Erdinçler, D. Sanin, A. Filibeli, B. Keskinler, E. Cokgor, Comparison of energy efficiencies for advanced anaerobic digestion, incineration, and gasification processes in municipal sludge management, J. Residuals Sci. Technol., 13 (2016) 57–64.
  17. E. Roche, J.M. de Andres, A. Narros, M.E. Rodríguez, Air and air-steam gasification of sewage sludge. The influence of dolomite and throughput in tar production and composition, Fuel, 115 (2014) 54–61.
  18. N. Nipattummakul, I.I. Ahmed, S. Kerdsuwan, A.K. Gupta, Hydrogen and syngas production from sewage sludge via steam gasification, Int. J. Hydrogen Energy, 35 (2010) 11738–11745.
  19. S. Werle, S. Sobek, Gasification of sewage sludge within a circular economy perspective: a Polish case study, Environ. Sci. Pollut. Res., 26 (2019) 1–11
  20. M. Atienza-Martínez, I. Rubio, I. Fontsa, J. Ceamanosa, G. Gea, Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vapors using γ-Al2O3, Chem. Eng. J., 308 (2017) 264–274.
  21. J.D. Bien, Management of sewage sludge by thermal methods, Eng. Protect. Environ., 4 (2012) 439–449 (in Polish).
  22. A. Xiaojuan, L. Weijun, Review on sludge drying process and dryer in solar energy, Am. J. Energy Eng., 5 (2017) 34–38.
  23. Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Uses of a Global Resource, Un-Habitat, 2008.
  24. D. Orhon, N. Artan, Modelling of Activated Sludge Systems, Technomic Publishing Co. Inc., Lancaster, PA, 1994, pp. 39–110.
  25. M. Huazhen, W. Fei, M. Feiyan, C. Yong, Measurent of water content and moisture distribution in sludge by 1H nuclear magnetic resonance spectroscopy, Drying Technol., 24 (2016) 267–274.
  26. J.P. der Hoek, H. Fooij, A. Struker, Wastewater as a resource: strategies to recover resources from Amsterdam’s wastewater, Resour. Conserv. Recycl., 113 (2016) 53–64.
  27. K. Fijalkowski, A. Rorat, A. Grobelak, M.J. Kacprzak, The presence of contaminations in sewage sludge - The current situation, J. Environ. Manage., 203 (2017) 1126–1136.
  28. V.K. Tyagi, S.L. Lo, Sludge: a waste or renewable source for energy and resources recovery?, Renewable Sustainable Energy Rev., 25 (2013) 708–772.
  29. COM (2016) 157, 2016/0084 (COD) Political Agreement Reached on 12 December 2018, Available at: http://europa.eu/rapid/press-release_IP-18-6161_en.htm.
  30. M. Worwag, Recovery of phosphorus as struvite from sewage sludge and sewage sludge ash, Desal. Wat. Treat., 134 (2018) 121–127.
  31. G.C. Becker, D. Wüst, H. Köhler, A. Lautenbach, A. Kruse, Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization, J. Environ. Manage., 238 (2019) 119–125.
  32. Z. Wzorek, M. Jodko, K. Gorazda, T. Rzepecki, Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge, J. Loss Prevent. Process Ind., 19 (2006) 39–50.
  33. R. Li, W. Teng, Y. Li, W. Wang, R. Cui, T. Yang, Potential recovery of phosphorus during the fluidized bed incineration of sewage sludge, J. Cleaner Prod., 140 (2017) 964–970.
  34. H. Weigand, M. Bertau, W. Hübner, F. Bohndick, A. Bruckert, RecoPhos: full-scale fertilizer production from sewage sludge ash, Waste Manage., 33 (2013) 540–544.
  35. B. Cieslik, P. Konieczka, A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods, J. Cleaner Prod., 142 (2017) 1728–1740.
  36. C. Adam, B. Peplinski, M. Michaelis, G. Kleya, F.G. Simon, Thermochemical treatment of sewage sludge ashes for phosphorus recovery, Waste Manage., 29 (2009) 1122–1128.
  37. H. Yuan, H. Lu, T. Wang, Y. Chen, T. Lei, Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients, Geoderma, 267 (2016) 17–23.
  38. E. Amonette, S. Joseph, S. Joseph. Characteristics of Biochar: Microchemical Properties, J. Lehmann, Ed., Biochar for Environmental Management: Science and Technology, Earthscan, London, 2009, pp. 33–52.
  39. Y.K. Chan, Z. Xu, Biochar: Nutrient Properties and their Enhancement, J. Lehmann, S. Joseph, Eds., Biochar for Environmental Management: Science and Technology, Earthscan, London, 2009, pp. 67–84.
  40. A. Kijo-Kleczkowska, K. Środa, M. Kosowska-Golachowska, T. Musiał, K. Wolski, Mechanisms and kinetics of granulated sewage sludge combustion, Waste Manage., 46 (2015) 459–471.
  41. R. Cano, S.I. Pérez-Elvira, F. Fdz-Polanco, Energy feasibility study of sludge pre-treatments: a review, Appl. Energy, 149 (2015) 176–185.
  42. P.H. Brunner, H. Rechberger, Waste to energy – key element for sustainable waste management, Waste Manage., 37 (2015) 3–12.
  43. A. Ostojski, M. Swinarski, The importance of the energy potential of sewage sludge in the aspect of the circular economy - an example of a sewage treatment plant in Gdańsk, Annual Set Environ. Protect., 20 (2018) 1252–1268 (in Polish).