References
- Y.S. Hong, R. Bhamidimarri, Evolutionary self-organising
modelling of a municipal wastewater treatment plant, Water
Res., 37 (2003) 1199–1212.
- A. Kusiak, A. Verma, X. Wei, A data-mining approach to predict
influent quality, Environ. Monit. Assess., 185 (2013) 2197–2210.
- L. Hongbin, H. Mingzhi, Y. ChangKyoo, A fuzzy neural
network-based soft sensor for modeling nutrient removal
mechanism in a full-scale wastewater treatment system, Desal.
Water Treat., 51 (2014) 6184–6193.
- B. Béraud, J.P. Steyer, C. Lemoine, E. Latrille, G. Manic,
C. Printemps-Vacquier, Towards a global multi objective
optimization of wastewater treatment plant based on
modeling and genetic algorithms, Water Sci. Technol., 56
(2007) 109–116.
- J. Alex, L. Benedetti, J. Copp, K.V. Gernaey, U. Jeppsson,
I. Nopens, M.N. Pons, L. Rieger, Ch. Rosen, J.P. Steyer,
P.A. Vanrolleghem, S. Winkler, Benchmark Simulation Model
No., 1 (BSM1). Technical Report, Department of Industrial
Electrical Engineering and Automation, Lund University,
LUTEDX/(TEIE7229)/1-62/(2008).
- J.F. Canete, P.D. Saz-Orozco, R. Baratti, M. Mulas, A. Ruano,
A. Garcia-Cerezo, Soft-sensing estimation of plant effluent
concentrations in a biological wastewater treatment plant using
an optimal neural network, Expert Syst. Appl., 63 (2016) 8–19.
- N. Clara, Neural networks complemented with genetic
algorithms and fuzzy systems for predicting nitrogenous
effluent variables in wastewater treatment plant, WSEAS Trans.
Syst., 6 (2008) 695–705.
- J. Drewnowski, M. Zmarzły, The Use of Mathematical Models
for Diagnosis of Activated Sludge Systems in WWTP, E3S Web
Conf., 22 (2017), https://doi.org/10.1051/e3sconf/20172200037.
- M. Ebrahimi, E.L. Gerber, T.D. Rockaway, Temporal
performance assessment of wastewater treatment plants by
using multivariate statistical analysis, J. Environ. Manage., 193
(2017) 234–246.
- L. Corominas, H.F. Larsen, X.F. Alsina, P.A. Vanrolleghem,
Including life cycle assessment for decision-making in
controlling wastewater nutrient removal systems, J. Environ.
Manage., 128 (2013) 759–767.
- B. Szeląg, J. Studziński, A data mining approach to the
prediction of food-to-mass ratio and mixed liquor suspended
solids, Pol. J. Environ. Stud., 26 (2017) 2231–2238.
- A. Luciano, P. Viotti, G. Mancini, V. Torretta, An integrated
wastewater treatment system using a BAS reactor with biomass
attached to tubular supports, J. Environ. Manage., 113 (2012)
51–60.
- S. Conserva, F. Tatti, V. Torretta, N. Ferronato, P. Viotti, An
integrated approach to the biological reactor–sedimentation
tank system, Resources, 94 (2019) 1–19.
- M. Al-Sammarraee, A. Chan, S.M. Salim, U.S. Mahabaleswar,
Large-eddy simulations of particle sedimentation in a
longitudinal sedimentation basin of a water treatment plant.
Part I: particle settling performance, J. Chem. Eng., 152 (2009)
315–32.
- U. Cortés, M. Martínez, J. Comas, M. Sànchez-Marrè,
I. Rodríguez-Roda, A conceptual model to facilitate knowledge
sharing for bulking solving in wastewater treatment
plant, AI Commun., 16 (2006) 279–289.
- A.M.P. Martins, J.J. Heijnen, M.C.M. van Loosdrecht, Bulking
sludge in biological nutrient removal systems, Biotechnol.
Bioeng., 86 (2004) 125–135.
- J. Comas, I.R. Roda, K.V. Gernaey, C. Rosen, U. Jeppsson, M.
Poch, Risk assessment modelling of microbiology-related solids
separation problems in activated sludge systems, Environ.
Modell. Software, 23 (2008) 1250–1261.
- X. Flores-Alsina, J. Comas, I.R. Roda, M. Poch, K.V. Gernaey,
U. Jeppsson, Evaluation of plant-wide WWTP control strategies
including the effects of filamentous bulking sludge, Water Sci.
Technol., 60 (2009) 2093–2103.
- A.C. Avella, T. Görner, J. Yvon, P. Chappe, P. Guinot-Thomas,
P. Donato, A combined approach for a better understanding
of wastewater treatment plants operation: statistical analysis
of monitoring database and sludge physico-chemical
characterization, Water Res., 45 (2011) 981–992.
- A. Asadi, A. Verma, K. Yang, Wastewater treatment aeration
process optimization: a data mining approach, J. Environ.
Manage., 203 (2016) 1–10.
- D.S. Lee, M.W. Lee, S.H. Woo, Y.J. Kim, J.M. Park, Nonlinear
dynamic partial least squares modeling of a full-scale biological
wastewater treatment plant, Process Biochem., 41 (2006)
2050–2057.
- H.W. Lee, M.W. Lee, J.M. Park, Multi-scale extension of PLS
algorithm for advanced on-line process monitoring, Chemom.
Intell. Lab. Syst., 98 (2009) 201–212.
- F. Luo, R. Yu, Y. Xu, Y. Li, Effluent Quality Prediction of
Wastewater Treatment Plant Based on Fuzzy-Rough Sets and
Artificial Neural Networks, Sixth International Conference on
Fuzzy Systems and Knowledge Discovery, IEEE, Tianjin, China,
2009, pp. 47–51.
- A. Kusiak, Z. Zhang, Short-horizon Prediction of Wind Power:
A Data-driven Approach, IEEE Trans. Energy Convers., 25
(2010) 1112–1122.
- B. Szeląg, K. Barbusiński, J. Studziński, Activated sludge
process modelling using selected machine learning techniques,
Desal Water Treat., 117 (2018) 78–87.
- L. Breiman, Random Forests, J. Mach. Learn., 45 (2000) 5–32.
- E. Kowalska, E. Paturej, M. Zielińska, Use of Lecane inermis
for control of sludge bulking caused by the Haliscomenobacter
genus, Desal Water Treat., 57 (2016) 10916–10923.
- I. Lou, Y. Zhao, Sludge bulking prediction using principle
component regression and artificial neural network, Math.
Probl. Eng., 2012 (2012) 1–17.
- B. Szeląg, K. Barbusiński, J. Studziński, Application of the
model of sludge volume index forecasting to assess reliability
and improvement of wastewater treatment plant operating
conditions, Desal Water Treat., 140 (2019) 132–143.
- J. Bayo, J.M. Angosto, J. Serrano-Aniorte, Evaluation of
physicochemical parameters influencing bulking episodes in
a municipal wastewater treatment plant, Water Pollution VIII:
Modell. Monit. Manage., 95 (2006) 531–542.
- M. Henze, P. Harremoes, E. Arvin, J. Lacour, Wastewater
Treatment, Biological and Chemical Processes, Springer-Verlag,
Berlin, 2002.
- B. Szeląg, L. Bartkiewicz, J. Studziński, Black-box forecasting
of selected indicator values for influent wastewater quality in
municipal treatment plant, Environ. Prot., 38 (2016) 39–46 (in
Polish).
- J. Lubos, T. Kaletova, M. Sedmakova, P. Balazova,
A. Cervenanska, Comparison of service characteristics of two
town’s WWTP, J. Ecol. Eng., 18 (2017) 61–67.
- M. Ahnert, C. Marx, P. Krebs, V. Kuehn, A black-box model for
generation of site-specific WWTP influent quality data based on
plant routine data, Water Sci. Technol., 74 (2016) 2978–2986.
- L. Belanche, J. Valdes, J. Comas, I. Rodriguez – Roda, M. Poch,
Prediction of the bulking phenomenon in wastewater treatment
plants, Artif. Intell. Eng., 14 (2000) 307–317.
- S. Venkadesh, G. Hoogenboom, W. Potter, R. McClendon,
A genetic algorithm to refine input data selection for air
temperature prediction using artificial neural networks, Appl.
Soft Comput., 13 (2013) 2253–2260.
- P. Kundu, A. Debsarkar, S. Mukherjee, S. Kumar, Artificial neural
network modelling in biological removal of organic carbon and
nitrogen for the treatment of slaughterhouse wastewater in a
batch reactor, Environ. Technol., 35 (2014) 1296–1306.
- G. Capizzi, G.L. Sciutto, P. Monforte, C. Napoli, Cascade
feed forward neural network based model for air pollutants
evaluation of single monitoring stations in urban areas, Int. J.
Electron. Telecommun., 61 (2015) 327–332.
- L. Rutkowski, Artificial Intelligence Methods and Techniques:
Computational Intelligence, PWN, Warsaw, 2006 (in Polish).
- C. Burges, A Tutorial on Support Vector Machines for Pattern
Recognition, U. Fayyad, Knowledge Discovery and Data
Mining, Kluwer, 1998, pp. 1–43.
- J.H. Friedman, Stochastic gradient boosted, Comput. Stat. Data
Anal., 38 (2002) 367–378.
- S.G. Setti, R.N. Rao, Artificial neural network approach for
prediction of stress–strain curve of near b titanium alloy, Rare
Met., 33 (2014) 249–257.
- V. Vapnik, Statistical Learning Theory, John Wiley and Sons,
New York, 1998.
- K. Barbusiński, H. Kościelniak, Influence of substrate loading
intensity on floc size in activated sludge process, Water Res., 29
(1995) 1703–1710.
- E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial
neural networks to estimate wastewater treatment plant inlet
biochemical oxygen demand, Environ. Prog., 27 (2008) 439–446.
- H.Z. Abyaneh, Evaluation of multivariate linear regression
and artificial neural networks in prediction of water quality
parameters, J. Environ. Health Sci., 12 (2014) 1–8.
- K. Minsoo, K. Yejin, K. Hyosoo, P. Wenhua, K. Changwon,
Evaluation of the k-nearest neighbour method for forecasting
the influent characteristics of wastewater treatment plant,
Front. Environ. Sci. Eng., 10 (2016) 299–310.
- S.A. Mirbagheri, M. Bagheri, S. Boudaghpour, M. Ehteshami,
Z. Bagheri, Performance evaluation and modeling of a
submerged membrane bioreactor treating combined municipal
and industrial wastewater using radial basis function artificial
neural networks, J. Environ. Health Sci., 13 (2015) 13–17.
- M. Häck, M. Köhne, Estimation of wastewater process
parameters using neural networks, Water Sci. Technol., 33
(1996) 101–115.
- A. Kusiak, X. Wei, Prediction of methane production in
wastewater treatment facility: a data-mining approach, Ann.
Oper. Res., 216 (2014) 71–81.
- A. Verma, X. Wei, A. Kusiak, Predicting the total suspended
solids in wastewater: a data-mining approach, Eng. Appl. Artif.
Intell., 26 (2012) 1366–1372.
- L.I.L. Fanjun, Q. Junfei, Z. Wei, A Fast Growing Cascade Neural
Network for BOD Estimation, Proceedings of the 34th Chinese
Control Conference (CCC), Hangzhou, 2015, pp. 3417–3422.
- F. Li, J. Qiao, H. Han, C. Yang, A self – organizing cascade neural
network with random weights for nonlinear system modeling,
Appl. Soft Comput., 42 (2016) 184–193.
- A. Kusiak, X. Wei, Optimization of the activated sludge process,
J. Energy Eng., 139 (2013) 12–17.