References

  1. Y.S. Hong, R. Bhamidimarri, Evolutionary self-organising modelling of a municipal wastewater treatment plant, Water Res., 37 (2003) 1199–1212.
  2. A. Kusiak, A. Verma, X. Wei, A data-mining approach to predict influent quality, Environ. Monit. Assess., 185 (2013) 2197–2210.
  3. L. Hongbin, H. Mingzhi, Y. ChangKyoo, A fuzzy neural network-based soft sensor for modeling nutrient removal mechanism in a full-scale wastewater treatment system, Desal. Water Treat., 51 (2014) 6184–6193.
  4. B. Béraud, J.P. Steyer, C. Lemoine, E. Latrille, G. Manic, C. Printemps-Vacquier, Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms, Water Sci. Technol., 56 (2007) 109–116.
  5. J. Alex, L. Benedetti, J. Copp, K.V. Gernaey, U. Jeppsson, I. Nopens, M.N. Pons, L. Rieger, Ch. Rosen, J.P. Steyer, P.A. Vanrolleghem, S. Winkler, Benchmark Simulation Model No., 1 (BSM1). Technical Report, Department of Industrial Electrical Engineering and Automation, Lund University, LUTEDX/(TEIE7229)/1-62/(2008).
  6. J.F. Canete, P.D. Saz-Orozco, R. Baratti, M. Mulas, A. Ruano, A. Garcia-Cerezo, Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network, Expert Syst. Appl., 63 (2016) 8–19.
  7. N. Clara, Neural networks complemented with genetic algorithms and fuzzy systems for predicting nitrogenous effluent variables in wastewater treatment plant, WSEAS Trans. Syst., 6 (2008) 695–705.
  8. J. Drewnowski, M. Zmarzły, The Use of Mathematical Models for Diagnosis of Activated Sludge Systems in WWTP, E3S Web Conf., 22 (2017), https://doi.org/10.1051/e3sconf/20172200037.
  9. M. Ebrahimi, E.L. Gerber, T.D. Rockaway, Temporal performance assessment of wastewater treatment plants by using multivariate statistical analysis, J. Environ. Manage., 193 (2017) 234–246.
  10. L. Corominas, H.F. Larsen, X.F. Alsina, P.A. Vanrolleghem, Including life cycle assessment for decision-making in controlling wastewater nutrient removal systems, J. Environ. Manage., 128 (2013) 759–767.
  11. B. Szeląg, J. Studziński, A data mining approach to the prediction of food-to-mass ratio and mixed liquor suspended solids, Pol. J. Environ. Stud., 26 (2017) 2231–2238.
  12. A. Luciano, P. Viotti, G. Mancini, V. Torretta, An integrated wastewater treatment system using a BAS reactor with biomass attached to tubular supports, J. Environ. Manage., 113 (2012) 51–60.
  13. S. Conserva, F. Tatti, V. Torretta, N. Ferronato, P. Viotti, An integrated approach to the biological reactor–sedimentation tank system, Resources, 94 (2019) 1–19.
  14. M. Al-Sammarraee, A. Chan, S.M. Salim, U.S. Mahabaleswar, Large-eddy simulations of particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part I: particle settling performance, J. Chem. Eng., 152 (2009) 315–32.
  15. U. Cortés, M. Martínez, J. Comas, M. Sànchez-Marrè, I. Rodríguez-Roda, A conceptual model to facilitate knowledge sharing for bulking solving in wastewater treatment plant, AI Commun., 16 (2006) 279–289.
  16. A.M.P. Martins, J.J. Heijnen, M.C.M. van Loosdrecht, Bulking sludge in biological nutrient removal systems, Biotechnol. Bioeng., 86 (2004) 125–135.
  17. J. Comas, I.R. Roda, K.V. Gernaey, C. Rosen, U. Jeppsson, M. Poch, Risk assessment modelling of microbiology-related solids separation problems in activated sludge systems, Environ. Modell. Software, 23 (2008) 1250–1261.
  18. X. Flores-Alsina, J. Comas, I.R. Roda, M. Poch, K.V. Gernaey, U. Jeppsson, Evaluation of plant-wide WWTP control strategies including the effects of filamentous bulking sludge, Water Sci. Technol., 60 (2009) 2093–2103.
  19. A.C. Avella, T. Görner, J. Yvon, P. Chappe, P. Guinot-Thomas, P. Donato, A combined approach for a better understanding of wastewater treatment plants operation: statistical analysis of monitoring database and sludge physico-chemical characterization, Water Res., 45 (2011) 981–992.
  20. A. Asadi, A. Verma, K. Yang, Wastewater treatment aeration process optimization: a data mining approach, J. Environ. Manage., 203 (2016) 1–10.
  21. D.S. Lee, M.W. Lee, S.H. Woo, Y.J. Kim, J.M. Park, Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant, Process Biochem., 41 (2006) 2050–2057.
  22. H.W. Lee, M.W. Lee, J.M. Park, Multi-scale extension of PLS algorithm for advanced on-line process monitoring, Chemom. Intell. Lab. Syst., 98 (2009) 201–212.
  23. F. Luo, R. Yu, Y. Xu, Y. Li, Effluent Quality Prediction of Wastewater Treatment Plant Based on Fuzzy-Rough Sets and Artificial Neural Networks, Sixth International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, Tianjin, China, 2009, pp. 47–51.
  24. A. Kusiak, Z. Zhang, Short-horizon Prediction of Wind Power: A Data-driven Approach, IEEE Trans. Energy Convers., 25 (2010) 1112–1122.
  25. B. Szeląg, K. Barbusiński, J. Studziński, Activated sludge process modelling using selected machine learning techniques, Desal Water Treat., 117 (2018) 78–87.
  26. L. Breiman, Random Forests, J. Mach. Learn., 45 (2000) 5–32.
  27. E. Kowalska, E. Paturej, M. Zielińska, Use of Lecane inermis for control of sludge bulking caused by the Haliscomenobacter genus, Desal Water Treat., 57 (2016) 10916–10923.
  28. I. Lou, Y. Zhao, Sludge bulking prediction using principle component regression and artificial neural network, Math. Probl. Eng., 2012 (2012) 1–17.
  29. B. Szeląg, K. Barbusiński, J. Studziński, Application of the model of sludge volume index forecasting to assess reliability and improvement of wastewater treatment plant operating conditions, Desal Water Treat., 140 (2019) 132–143.
  30. J. Bayo, J.M. Angosto, J. Serrano-Aniorte, Evaluation of physicochemical parameters influencing bulking episodes in a municipal wastewater treatment plant, Water Pollution VIII: Modell. Monit. Manage., 95 (2006) 531–542.
  31. M. Henze, P. Harremoes, E. Arvin, J. Lacour, Wastewater Treatment, Biological and Chemical Processes, Springer-Verlag, Berlin, 2002.
  32. B. Szeląg, L. Bartkiewicz, J. Studziński, Black-box forecasting of selected indicator values for influent wastewater quality in municipal treatment plant, Environ. Prot., 38 (2016) 39–46 (in Polish).
  33. J. Lubos, T. Kaletova, M. Sedmakova, P. Balazova, A. Cervenanska, Comparison of service characteristics of two town’s WWTP, J. Ecol. Eng., 18 (2017) 61–67.
  34. M. Ahnert, C. Marx, P. Krebs, V. Kuehn, A black-box model for generation of site-specific WWTP influent quality data based on plant routine data, Water Sci. Technol., 74 (2016) 2978–2986.
  35. L. Belanche, J. Valdes, J. Comas, I. Rodriguez – Roda, M. Poch, Prediction of the bulking phenomenon in wastewater treatment plants, Artif. Intell. Eng., 14 (2000) 307–317.
  36. S. Venkadesh, G. Hoogenboom, W. Potter, R. McClendon, A genetic algorithm to refine input data selection for air temperature prediction using artificial neural networks, Appl. Soft Comput., 13 (2013) 2253–2260.
  37. P. Kundu, A. Debsarkar, S. Mukherjee, S. Kumar, Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor, Environ. Technol., 35 (2014) 1296–1306.
  38. G. Capizzi, G.L. Sciutto, P. Monforte, C. Napoli, Cascade feed forward neural network based model for air pollutants evaluation of single monitoring stations in urban areas, Int. J. Electron. Telecommun., 61 (2015) 327–332.
  39. L. Rutkowski, Artificial Intelligence Methods and Techniques: Computational Intelligence, PWN, Warsaw, 2006 (in Polish).
  40. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, U. Fayyad, Knowledge Discovery and Data Mining, Kluwer, 1998, pp. 1–43.
  41. J.H. Friedman, Stochastic gradient boosted, Comput. Stat. Data Anal., 38 (2002) 367–378.
  42. S.G. Setti, R.N. Rao, Artificial neural network approach for prediction of stress–strain curve of near b titanium alloy, Rare Met., 33 (2014) 249–257.
  43. V. Vapnik, Statistical Learning Theory, John Wiley and Sons, New York, 1998.
  44. K. Barbusiński, H. Kościelniak, Influence of substrate loading intensity on floc size in activated sludge process, Water Res., 29 (1995) 1703–1710.
  45. E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand, Environ. Prog., 27 (2008) 439–446.
  46. H.Z. Abyaneh, Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters, J. Environ. Health Sci., 12 (2014) 1–8.
  47. K. Minsoo, K. Yejin, K. Hyosoo, P. Wenhua, K. Changwon, Evaluation of the k-nearest neighbour method for forecasting the influent characteristics of wastewater treatment plant, Front. Environ. Sci. Eng., 10 (2016) 299–310.
  48. S.A. Mirbagheri, M. Bagheri, S. Boudaghpour, M. Ehteshami, Z. Bagheri, Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks, J. Environ. Health Sci., 13 (2015) 13–17.
  49. M. Häck, M. Köhne, Estimation of wastewater process parameters using neural networks, Water Sci. Technol., 33 (1996) 101–115.
  50. A. Kusiak, X. Wei, Prediction of methane production in wastewater treatment facility: a data-mining approach, Ann. Oper. Res., 216 (2014) 71–81.
  51. A. Verma, X. Wei, A. Kusiak, Predicting the total suspended solids in wastewater: a data-mining approach, Eng. Appl. Artif. Intell., 26 (2012) 1366–1372.
  52. L.I.L. Fanjun, Q. Junfei, Z. Wei, A Fast Growing Cascade Neural Network for BOD Estimation, Proceedings of the 34th Chinese Control Conference (CCC), Hangzhou, 2015, pp. 3417–3422.
  53. F. Li, J. Qiao, H. Han, C. Yang, A self – organizing cascade neural network with random weights for nonlinear system modeling, Appl. Soft Comput., 42 (2016) 184–193.
  54. A. Kusiak, X. Wei, Optimization of the activated sludge process, J. Energy Eng., 139 (2013) 12–17.