References

  1. A.C. Avella, T. Görner, J. Yvon, P. Chappe, P. Guinot-Thomas, P. Donato, A combined approach for a better understanding of wastewater treatment plants operation: statistical analysis of monitoring database and sludge physico-chemical characterization, Water Res., 45 (2011) 981–992.
  2. L. Hongbin, H. Mingzhi, Y. ChangKyoo, A fuzzy neural network-based soft sensor for modeling nutrient removal mechanism in a full-scale wastewater treatment system, Desal. Water Treat., 51 (2014) 6184–6193.
  3. J.F. Canete, P.D. Saz-Orozco, R. Baratti, M. Mulas, A. Ruano, A. Garcia-Cerezo, Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network, Expert Syst. Appl., 63 (2016) 8–19.
  4. J. Comas, I.R. Roda, K.V. Gernaey, C. Rosen, U. Jeppsson, M. Poch, Risk assessment modelling of microbiology-related solids separation problems in activated sludge systems, Environ. Modell. Software, 23 (2008) 1250–1261.
  5. X. Flores-Alsina, J. Comas, I.R. Roda, M. Poch, K.V. Gernaey, U. Jeppsson, Evaluation of plant-wide WWTP control strategies including the effects of filamentous bulking sludge, Water Sci. Technol., 60 (2009) 2093–2103.
  6. U. Cortés, M. Martínez, J. Comas, M. Sànchez-Marrè, I. Rodríguez-Roda, A conceptual model to facilitate knowledge sharing for bulking solving in wastewater treatment plant, AI Commun., 16 (2006) 279–289.
  7. B. Béraud, J.P. Steyer, C. Lemoine, E. Latrille, G. Manic, C. Printemps-Vacquier, Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms, Water Sci. Technol., 56 (2007) 109–116.
  8. P. Kundu, A. Debsarkar, S. Mukherjee, S. Kumar, Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor, Environ. Technol., 35 (2014) 1296–1306.
  9. J.F. McCormick, B. Johnson, A. Turner, Analyzing Risk in Wastewater Process Design: Using Monte Carlo Simulation to Move Beyond Conventional Design Methods, Proc. WEFTEC, San Diego, 2007.
  10. D. Bixio, R. Carrette, I. Boonen, P. van Hauwermeiren, C. Thoeye, P. Ockier, Safeguard Your Investments for Complying with Stricter Limits - an Effective Tailor-made Plan, In: Proc. 1st IWA World Congress, Paris (France), 4–7 Jul 2000.
  11. D. Messaoud, A. Bachir, M. Maurice, Determination and analysis of daily reliability level of municipal wastewater treatment plant, Courrier du Savoir, 17 (2013) 39–46.
  12. M. Taheriyoun, S. Moradinejad, Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation, Environ. Monit. Assess., 187 (2015) 1–13.
  13. A. Asadi, A. Verma, K. Yang, Wastewater treatment aeration process optimization: a data mining approach, J. Environ. Manage., 203 (2016) 1–10.
  14. M. Ebrahimi, E.L. Gerber, T.D. Rockaway, Temporal performance assessment of wastewater treatment plants by using multivariate statistical analysis, J. Environ. Manage., 193 (2017) 234–246.
  15. G. Fu, D. Butler, S.T. Khu, S. Sun, Imprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theory, Water Resour. Res., 47 (2011) 1–13.
  16. B. Szeląg, K. Barbusiński, J. Studziński, Activated sludge process modeling using selected machine learning techniques, Desal. Water Treat., 117 (2018) 78–87.
  17. B. Szeląg, K. Barbusiński, J. Studziński, Application of the model of sludge volume index forecasting to assess reliability and improvement of wastewater treatment plant operating conditions, Desal. Water Treat., 140 (2019) 132–143.
  18. B. Szeląg, Ł. Bąk, R. Suligowski, J. Górski, Statistical models to predict discharge overflow, Water Sci. Technol., 78 (2018) 1208–1218.
  19. S.C. Bagley, H. White, B.A. Golomb, Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain, J. Clin. Epidemiol., 54 (2001) 979–985.
  20. J. Bayo, J.M. Angosto, J. Serrano-Aniorte, Evaluation of physicochemical parameters influencing bulking episodes in a municipal wastewater treatment plant, Water Pollut. VIII: Model. Monit. Manage., 95 (2006) 531–542.
  21. B. Szeląg, P. Siwicki, in: B. Kaźmierczak, M. Kutyłowska, K. Piekarska, A. Trusz-Zdybek, Application of the Selected Classification Models to the Analysis of the Settling Capacity of the Activated Sludge – Case Study, E3S Web of Conferences 17, Boguszów-Gorce, 2017, pp. 1–7.
  22. S.C. Oliveira, M. Sperling, Reliability analysis of wastewater treatment plants, Water Res., 42 (2008) 1182–1194.
  23. F.C. Wu, Y.P. Tsang, Second-order Monte Carlo uncertainty/variability analysis using correlated model parameters: application to salmonid embryo survival risk assessment, Ecol. Modell., 177 (2004) 393–414.
  24. B. Bacchi, M. Balistrocchi, G. Grossi, Proposal of a semiprobabilistic approach for storage facility design, Urban Water J., 5 (2008) 195–208
  25. I. Lou, Y. Zhao, Sludge bulking prediction using principle component regression and artificial neural network, Math. Probl. Eng., 2012 (2012) 1–17.
  26. K. Barbusiński, H. Kościelniak, Influence of substrate loading intensity on floc size in activated sludge process, Water Res., 29 (1995) 1703–1710.
  27. A.M.P. Martins, J.J. Heijnen, M.C.M. van Loosdrecht, Bulking sludge in biological nutrient removal systems, Biotechnol. Bioeng., 86 (2004) 125–135.
  28. E. Kowalska, E. Paturej, M. Zielińska, Use of Lecane inermis for control of sludge bulking caused by the Haliscomenobacter genus, Desal. Water Treat., 57 (2016) 10916–10923.
  29. E. Bezak – Mazur, R. Stoinska, B. Szeląg, Evaluation of the impact of operational parameters and particular filamentous bacteria on activated sludge volume index - a case study, Annu. Set Environ. Prot., 18 (2016) 480–491.