References
- A.C. Avella, T. Görner, J. Yvon, P. Chappe, P. Guinot-Thomas,
P. Donato, A combined approach for a better understanding
of wastewater treatment plants operation: statistical analysis
of monitoring database and sludge physico-chemical
characterization, Water Res., 45 (2011) 981–992.
- L. Hongbin, H. Mingzhi, Y. ChangKyoo, A fuzzy neural
network-based soft sensor for modeling nutrient removal
mechanism in a full-scale wastewater treatment system, Desal.
Water Treat., 51 (2014) 6184–6193.
- J.F. Canete, P.D. Saz-Orozco, R. Baratti, M. Mulas, A. Ruano,
A. Garcia-Cerezo, Soft-sensing estimation of plant effluent
concentrations in a biological wastewater treatment plant using
an optimal neural network, Expert Syst. Appl., 63 (2016) 8–19.
- J. Comas, I.R. Roda, K.V. Gernaey, C. Rosen, U. Jeppsson, M.
Poch, Risk assessment modelling of microbiology-related solids
separation problems in activated sludge systems, Environ.
Modell. Software, 23 (2008) 1250–1261.
- X. Flores-Alsina, J. Comas, I.R. Roda, M. Poch, K.V. Gernaey,
U. Jeppsson, Evaluation of plant-wide WWTP control strategies
including the effects of filamentous bulking sludge, Water Sci.
Technol., 60 (2009) 2093–2103.
- U. Cortés, M. Martínez, J. Comas, M. Sànchez-Marrè,
I. Rodríguez-Roda, A conceptual model to facilitate knowledge
sharing for bulking solving in wastewater treatment plant, AI
Commun., 16 (2006) 279–289.
- B. Béraud, J.P. Steyer, C. Lemoine, E. Latrille, G. Manic,
C. Printemps-Vacquier, Towards a global multi objective
optimization of wastewater treatment plant based on modeling
and genetic algorithms, Water Sci. Technol., 56 (2007) 109–116.
- P. Kundu, A. Debsarkar, S. Mukherjee, S. Kumar, Artificial neural
network modelling in biological removal of organic carbon and
nitrogen for the treatment of slaughterhouse wastewater in a
batch reactor, Environ. Technol., 35 (2014) 1296–1306.
- J.F. McCormick, B. Johnson, A. Turner, Analyzing Risk in
Wastewater Process Design: Using Monte Carlo Simulation to
Move Beyond Conventional Design Methods, Proc. WEFTEC,
San Diego, 2007.
- D. Bixio, R. Carrette, I. Boonen, P. van Hauwermeiren,
C. Thoeye, P. Ockier, Safeguard Your Investments for Complying
with Stricter Limits - an Effective Tailor-made Plan, In: Proc. 1st
IWA World Congress, Paris (France), 4–7 Jul 2000.
- D. Messaoud, A. Bachir, M. Maurice, Determination and
analysis of daily reliability level of municipal wastewater
treatment plant, Courrier du Savoir, 17 (2013) 39–46.
- M. Taheriyoun, S. Moradinejad, Reliability analysis of a
wastewater treatment plant using fault tree analysis and Monte
Carlo simulation, Environ. Monit. Assess., 187 (2015) 1–13.
- A. Asadi, A. Verma, K. Yang, Wastewater treatment aeration
process optimization: a data mining approach, J. Environ.
Manage., 203 (2016) 1–10.
- M. Ebrahimi, E.L. Gerber, T.D. Rockaway, Temporal
performance assessment of wastewater treatment plants by
using multivariate statistical analysis, J. Environ. Manage.,
193 (2017) 234–246.
- G. Fu, D. Butler, S.T. Khu, S. Sun, Imprecise probabilistic
evaluation of sewer flooding in urban drainage systems using
random set theory, Water Resour. Res., 47 (2011) 1–13.
- B. Szeląg, K. Barbusiński, J. Studziński, Activated sludge
process modeling using selected machine learning techniques,
Desal. Water Treat., 117 (2018) 78–87.
- B. Szeląg, K. Barbusiński, J. Studziński, Application of the
model of sludge volume index forecasting to assess reliability
and improvement of wastewater treatment plant operating
conditions, Desal. Water Treat., 140 (2019) 132–143.
- B. Szeląg, Ł. Bąk, R. Suligowski, J. Górski, Statistical models
to predict discharge overflow, Water Sci. Technol., 78 (2018)
1208–1218.
- S.C. Bagley, H. White, B.A. Golomb, Logistic regression in
the medical literature: standards for use and reporting, with
particular attention to one medical domain, J. Clin. Epidemiol.,
54 (2001) 979–985.
- J. Bayo, J.M. Angosto, J. Serrano-Aniorte, Evaluation of
physicochemical parameters influencing bulking episodes in
a municipal wastewater treatment plant, Water Pollut. VIII:
Model. Monit. Manage., 95 (2006) 531–542.
- B. Szeląg, P. Siwicki, in: B. Kaźmierczak, M. Kutyłowska,
K. Piekarska, A. Trusz-Zdybek, Application of the Selected
Classification Models to the Analysis of the Settling Capacity of
the Activated Sludge – Case Study, E3S Web of Conferences 17,
Boguszów-Gorce, 2017, pp. 1–7.
- S.C. Oliveira, M. Sperling, Reliability analysis of wastewater
treatment plants, Water Res., 42 (2008) 1182–1194.
- F.C. Wu, Y.P. Tsang, Second-order Monte Carlo uncertainty/variability analysis using correlated model parameters:
application to salmonid embryo survival risk assessment, Ecol.
Modell., 177 (2004) 393–414.
- B. Bacchi, M. Balistrocchi, G. Grossi, Proposal of a
semiprobabilistic approach for storage facility design, Urban
Water J., 5 (2008) 195–208
- I. Lou, Y. Zhao, Sludge bulking prediction using principle
component regression and artificial neural network, Math.
Probl. Eng., 2012 (2012) 1–17.
- K. Barbusiński, H. Kościelniak, Influence of substrate loading
intensity on floc size in activated sludge process, Water Res.,
29 (1995) 1703–1710.
- A.M.P. Martins, J.J. Heijnen, M.C.M. van Loosdrecht, Bulking
sludge in biological nutrient removal systems, Biotechnol.
Bioeng., 86 (2004) 125–135.
- E. Kowalska, E. Paturej, M. Zielińska, Use of Lecane inermis
for control of sludge bulking caused by the Haliscomenobacter genus, Desal. Water Treat., 57 (2016) 10916–10923.
- E. Bezak – Mazur, R. Stoinska, B. Szeląg, Evaluation of the
impact of operational parameters and particular filamentous
bacteria on activated sludge volume index - a case study, Annu.
Set Environ. Prot., 18 (2016) 480–491.