References

  1. B. Ozbey-Unal, D.Y. Imer, B. Keskinler, I. Koyuncu, Boron removal from geothermal water by air gap membrane distillation, Desalination, 433 (2018) 141–150.
  2. R. Valladares Linares, V. Yangali-Quintanilla, Z. Li, G. Amy, Rejection of micropollutants by clean and fouled forward osmosis membrane, Water Res., 45 (2011) 6737–6744.
  3. B. Van der Bruggen, C. Vandecasteele, Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry, Environ. Pollut., 122 (2003) 435–445.
  4. S. Velizarov, C. Matos, A. Oehmen, S. Serra, M. Reis, J. Crespo, Removal of inorganic charged micropollutants from drinking water supplies by hybrid ion exchange membranę processes, Desalination, 223 (2008) 85–90.
  5. M. Tahaikt, A. Ait Haddou, R. El Habbani, Z. Amor, F. Elhannouni, M. Taky, M. Kharif, A. Boughriba, M. Hafsi, A. Elmidaoui, Comparison of the performances of three commercial membranes in fluoride removal by nanofiltration. Continuous operations, Desalination, 225, (2008) 209–219.
  6. M. Rajca, M. Bodzek, B. Tomaszewska, M. Tyszer, E. Kmiecik, K. Wątor, Prevention of scaling during the desalination of geothermal water by means of nanofiltration, Desalin. Water Treat., 73 (2017) 198–207.
  7. M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: a state-of-the-art review, Desalination, 459 (2019) 59–104.
  8. J. Shen, A. Schäfer, Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review, Chemosphere, 117 (2014) 679–691.
  9. WHO, Guidelines for Drinking-Water Quality, 4th ed., World Health Organization, Geneva, 2011
  10. S. Kim, K. Hoon Chu, Y.A.J. Al-Hamadani, C.M. Park, M. Jang, D.-H. Kim, M. Yu, J. Heo, Y. Yoon, Removal of contaminants of emerging concern by membranes in water and wastewater: a review, Chem. Eng., 335 (2018) 896–914.
  11. S. Mehran Abtahi, S. Ilyas, C.J. Cassan, C. Albasi, W.M. de Vos, Micropollutant removal from secondary-treated municipal wastewater using weak polyelectrolyte multilayer based nanofiltration membranes, J. Membr. Sci., 548 (2018) 654–666.
  12. A. Egea-Corbacho, S. Gutierrez Ruiz, J. María Quiroga Alonso, Removal of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: full-scale pilot plant, J. Clean. Prod., 214 (2019) 514–523.
  13. K. Arola, H. Hatakka, M. Mänttäri, M. Kallioinen, Novel process concept alternatives for improved removal of micropollutants in wastewater treatment, Sep. Purif. Technol., 186 (2017) 333–341.
  14. A. Egea-Corbacho Lopera, S. Gutiérrez Ruiz, J.M. Quiroga Alonso, Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: pilot plant, J. Water Process Eng., 29 (2019) 100800.
  15. I. Skoczko, Efficiency estimation of water purification with various filtration materials, Desal. Water Treat., 134 (2018) 99–108.
  16. I. Skoczko, J. Piekutin, A. Roszczenko, Iron and manganese removal from groundwater by filtration on selected masses, Annu. Set Environ. Protect., 17 (2015) 1587–1608.
  17. I. Skoczko, J. Piekutin, K. Ignatowicz, Efficiency of manganese removal from water in selected filter beds, Desal. Water Treat., 57 (2016) 1611–1619.
  18. E. Szatyłowicz, I. Skoczko, Studies on the efficiency of groundwater treatment process with adsorption on activated alumina, Ecol. Eng., 18 (2017) 211–218.
  19. E. Szatyłowicz, I. Skoczko, The use of activated alumina and magnetic field for the removal heavy metals from water, Ecol. Eng., 19 (2018) 61–67.
  20. Y. Zhang, L. Wang, W. Sun, Y. Hu, H. Tang, Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive review, J. Ind. Eng. Chem., 81 (2020) 7–23, doi: 10.1016/j.jiec.2019.09.002
  21. D. Zhou, L. Zhu, Y. Fu, M. Zhu, L. Xue, Development of lower cost seawater desalination processes using nanofiltration technologies – a review, Desalination, 376 (2015) 109–116.
  22. J. Liu, J. Yuan, Z. Ji, B. Wang, Y. Hao, X. Guo, Concentrating brine from seawater desalination process by nanofiltrationelectrodialysis integrated membrane technology, Desalination, 390 (2016) 53–61.
  23. V. Albergamo, B. Blankert, E.R. Cornelissec, B. Hofs, W.-J. Knibbe, W. van der Meer, P. de Voogt, Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment, Water Res., 148 (2019) 535–545.
  24. S.M. Abtahi, L. Marbelia, A.Y. Gebreyohannes, P. Ahmandiannamini, C. Joannis-Cassan, C. Albasi, W.M. de Vos, I.F.J. Vankelecom, Micropollutants rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally-treated municipal wastewater, Sep. Purif. Techol., 209 (2019) 470–481.
  25. K. Moons, B. Van der Bruggen, Removal of micropollutants during drinking water production from surface water with nanofiltration, Desalination, 199 (2006) 245–247.
  26. E. te Brinke, D.M. Reurink, I. Achterhuis, J. de Grooth, W.M. de Vos, Asymmetric polyelectrolyte multilayer membranes with ultrathin separation layers for highly efficient micropollutant removal, Appl. Mater., 18 (2020) 100471, doi: 10.1016/j. apmt.2019.100471
  27. O. Hylling, M.N. Fini, L. Ellegaard-Jensen, J. Muff, H.T. Madsen, J. Aamand, L.H. Hansen, A novel hybrid concept for implementation in drinking water treatment targets micropollutant removal by combining membrane filtration with biodegradation, Sci. Total Environ., 694 (2019) 133710.
  28. C. Liu, R. Takagi, L. Cheng, D. Saeki, H. Matsuyama, Enzymeaided forward osmosis (E-FO) process to enhance removal of micropollutants from water resources, J. Membr. Sci., 593 (2020) 117399.
  29. J.-P. Fan, J.-J. Luo, X-H. Zhang, B. Zhen, C.-Y. Dong, Y.-C. Li, J. Shen, Y.-T. Cheng, H.-P. Chen, A novel electrospun β-CD/CS/ PVA nanofiber membrane for simultaneous and rapid removal of organic micropollutants and heavy metal ions from water, Chem. Eng., 378 (2019) 122232.
  30. L. Guo, K. Zhang, X. Han, Q. Zhao, D. Wang, F. Fu, Y. Liang, Highly efficient visible-light-driven photo-Fenton catalytic performance over FeOOH/Bi2WO6 composite for organic pollutant degradation, J. Alloys Compd., 816 (2020) 152560, doi: 10.1016/j.jallcom.2019.152560
  31. N. Lopez-Vinent, A. Cruz-Alcalde, C. Guttierrez, P. Marco, J. Gimenez, S. Esplugas, Micropollutant removal in real WW by photo-Fenton (circumneutral and acid pH) with BLB and LED lamps, Chem. Eng., 379 (2020) 122416.
  32. I. Skoczko, J. Piekutin, Photo-Fenton method usage to organic compounds degradation, Desal. Water Treat., 52 (2014) 3837–3842.
  33. I. Skoczko, Experience from the design and implementation of boiler water treatment installation for ENERGO-TECH Co. Ltd., Annu. Set Environ. Protect., 13 (2011) 1731–1742.
  34. B. Tomaszewska, M. Tyszer, M. Bodzek, M. Rajca, The concept of multi-variant use of geothermal water concentrates, Desal. Water Treat., 128 (2018) 179–186.
  35. DOW FILMTEC NF90 Nanofiltration High Productivity Element – Product Information (Form No. 609–00378–1206). Available at: https://www.lenntech.com/Data-sheets/Dow- Filmtec-NF90-4040.pdf
  36. DOW FILMTEC ROBW30HR-440i Nanofiltration Element for Commercial System – Product Information (Form No. 609- 02171-0609). Available at: https://www.lenntech.com/Datasheets/Dow-Filmtec-BW30HR-440i.pdf
  37. DOW FILMTEC NF270 Nanofiltration Element for Commercial System – Product Information (Form No. 609-00519-1206). Available at: https://www.lenntech.com/Data-sheets/Dow- Filmtec-NF270-4040.pdf
  38. DOW FILMTEC BW30FR-400 High Productivity Fouling Resistant RO Element – Product Information (Form No. 609- 00391-0910). Available at: https://www.lenntech.com/Datasheets/ Dow-Filmtec-BW30FR-400.pdf
  39. A.I. Schafer, A.G. Fane, T.D. Waite, Nanofiltration Principles and Applications, Elsevier Publications, UK 2006.
  40. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membrane review: recent advances and future prospects, Desalination, 356 (2015) 226–254.
  41. Y. Song, B. Su, X. Gao, C. Gao, The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system, Desalination, 296 (2012) 30–36.
  42. Y. Song, X. Gao, C. Gao, Evaluation of scaling potential in a pilot-scale NF-SWRO integrated seawater desalination system, J. Membr. Sci., 443 (2013) 201–209.
  43. C. Kaya, G. Sert, N. Kabay, M. Arda, M. Yüksel, Ö. Egemen, Pretreatment with nanofiltration (NF) in seawater desalination— Preliminary integrated membrane tests in Urla, Turkey, Desalination, 369 (2015) 10–17.
  44. Regulation of the Minister of Health of 7 December 2017 on the Quality of Water Intended for Human Consumption (DZ. U. z 2017 r. poz. 2294).
  45. Regulation of the Minister of Health of 13 April 2006 on the Scope of Tests Necessary to Determine the Therapeutic Properties of Natural Medicinal Materials and the Therapeutic Properties of the Climate, the Criteria for Their Evaluation and the Model of the Certificate Confirming These Properties. (t.j. Dz. U z 2018 r. poz. 605).
  46. M. Gündoğdu, Y.A. Jarma, N. Kabay, T. Ö.Pek, M. Yüksel, Integration of MBR with NF/RO processes for industrial wastewater reclamation and water reuse-effect of membrane type on product water quality, J. Water Process Eng., 29 (2019) 100574.
  47. P. Cartagena, M. El Kaddouri, V. Cases, A. Trapote, D. Prats, Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR–NF/RO treatment, Sep. Purif. Technol., 110 (2013) 132–143.
  48. F. Macedonio, E. Curcio, E. Drioli, Integrated membrane systems for seawater desalination: energetic and energetic analysis, economic evaluation, experimental study, Desalination, 203 (2007) 260–276.
  49. K. Kimura, G. Amy, J.E. Drewes, T. Heberer, Tae-Uk Kim, Y. Watanabe, Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes, J. Membr. Sci., 227 (2003) 113–121.