References

  1. M. Szlachta, W. Adamski, Assessing the efficiency of natural organic matter (NOM) removal from water by coagulation, Ochr Sr, 30 (2008) 9–11.
  2. M. Wolska, Removal of precursors of chlorinated organic compounds in selected water treatment processes, Desal. Wat. Treat., 52 (2013) 3938–3946.
  3. J.B. Serodes, M.J. Rodriguez, H.M. Li, C. Bouchard, Occurrence of THMs and HAAs in experimental chlorinated waters of the Quebec City area (Canada), Chemosphere, 51 (2003) 253–263.
  4. Y.L. Lin, P.C. Chiang, E.E. Chang, Reduction of disinfection by-products precursors by nanofiltration process, J. Hazard. Mater., 137 (2006) 324–331.
  5. S. Chowdhury, P. Champagne, P.J. McLellan, Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review, Sci. Total Environ., 407 (2009) 4189–4206.
  6. P. Roccaro, H.S. Chang, F.G.A. Vagliasindi, G.V. Korshin, Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water, Water Res., 42 (2008) 1879–1888.
  7. D. Ghernaout, B. Ghernaout, M.W. Naceur, Embodying the chemical water treatment in the green chemistry – a review, Desalination, 271 (2011) 1–10.
  8. T. Ratpukdi, J.A. Rice, G. Chilom, A. Bezbaruah, E. Khan, Rapid fractionation of natural organic matter in water using a novel solid-phase extraction technique, Water Environ. Res., 81 (2009) 2299–2308.
  9. A. Matilainen, M. Vepsäläinen, M. Sillanpää, Natural organic matter removal by coagulation during drinking water treatment: a review, Adv. Colloid Interface Sci., 159 (2010) 189–197.
  10. J.A. Leenheer, J.P. Croué, Characterizing aquatic dissolved organic matter, Environ. Sci. Technol., 37 (2003) 18–26.
  11. B. Bazrafkan, Q. Wei, R. Fabris, C.W.K. Chow, J. Leeuwen, D. Wang, M. Drikas, Assessment of a new combined fractionation technique for characterization of the natural organic matter in the coagulation process, Desal. Wat. Treat., 48 (2012) 252–260.
  12. T. Bond, E.H. Goslan, S.A. Parsons, B. Jefferson, Treatment of disinfection by-product precursors, Environ. Technol., 32 (2011) 1–21.
  13. E. Sharp, P. Jarvis, S. Parsons, B. Jefferson, Impact of fractional character on the coagulation of NOM, Colloids Surf., A, 286 (2006) 104–111.
  14. C. Chow, R. Fabris, M. Drikas, A rapid fractionation technique to characterize natural organic matter for the optimization of water treatment processes, J. Water Supply Res. Technol. AQUA, 53 (2004) 85–92.
  15. J. Świetlik, A. Dąbrowska, U. Raczyk-Stanislawiak, J. Nawrocki, Reactivity of natural organic matter fractions with chlorine dioxide and ozone, Water Res., 38 (2004) 547–558.
  16. E. Sharp, S. Parsons, B. Jefferson, Seasonal variations in natural organic matter and its impact on coagulation in water treatment, Sci. Total Environ., 363 (2006) 183–194.
  17. T. Bond, E. Goslan, B. Jefferson, F. Roddick, L. Fan, S. Parsons, Chemical and biological oxidation of NOM surrogates and effect on HAA formation, Water Res., 43 (2009) 2615–2622.
  18. P. Bose, D. Reckhow, The effect of ozonation on natural organic matter removal by alum coagulation, Water Res., 41 (2007) 1516–1524.
  19. M. Włodarczyk-Makuła, Application of UV-rays in removal of polycyclic aromatic hydrocarbons from treated wastewater, J. Environ. Sci. Health., Part A, 46 (2011) 248–257.
  20. W. Wang, W. Wang, Q. Fan, Y. Wang, Z. Qiao, X. Wang, Effects of UV radiation on humic acid coagulation characteristics in drinking water treatment processes, Chem. Eng. J., 256 (2014) 137–143.
  21. T. Karanfil, M.A. Schlautman, I. Erdogan, Survey of DOC and UV measurement practices with implications for SUVA determination, J. AWWA, 94 (2002) 68–80.
  22. D. Ghernaout, B. Ghernaout, A. Kellil, Natural organic matter removal and enhanced coagulation as a link between coagulation and electrocoagulation, Desal. Wat. Treat., 2 (2009) 203–222.
  23. J.K. Edzwald, J.E. Tobiason, Enhanced coagulation: US requirements and a broader view, Water Sci. Technol., 40 (1999) 63–70.
  24. J. Machi, J. Mołczan, Methods for natural organic matter characterization in water taken and treated for human consumption, Ochrona Środowiska, 38 (2016) 25–2.
  25. A. Płatkowska-Siwiec, M. Bodzek, The influence of membrane and water properties on fouling during ultrafiltration, Desal. Wat. Treat., 35 (2011) 235–241.
  26. L. Zhi-sheng, Y. Jun, L. Li, Y. Yu-juan, Characterization of NOM and THM formation potential in reservoir source water, Desal. Wat. Treat., 6 (2009) 1–4.
  27. D. Ghernaout, The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation – a review, J. King Saud Univ., 26 (2014) 169–180.
  28. M. Sillanpää, M.Ch. Ncibi, A. Matilainen, M. Vepsäläinen, Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review, Chemosphere, 190 (2018) 54–71.
  29. A. Nowacka, M. Włodarczyk Makuła, B. Macherzyński, Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants, Desal. Wat. Treat, 52 (2014) 3843–3851.
  30. A. Nowacka, M. Włodarczyk-Makuła, B. Tchórzewska-Cieślak, J. Rak, The ability to remove the priority PAHs from water during coagulation process including risk assessment, Desal. Wat. Treat., 57 (2016) 1297–1309.
  31. I. Krupińska, The influence of aeration and type of coagulant on effectiveness in removing pollutants from groundwater in the process of coagulation, Chem. Biochem. Eng. Q., 30 (2016) 465–475.
  32. I. Krupińska, The impact of the oxidising agent type and coagulant type on the effectiveness of coagulation in the removal of pollutants from underground water with an increased content of organic substances, J. Environ. Eng. Landscape, 24 (2016) 70–78.
  33. J.M. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., 100 (2003) 475–502.
  34. L. Dąbrowska, Removal of organic matter from surface water using coagulants with various basicity, J. Ecol. Eng., 17 (2016) 66–72.
  35. S. Hussain, J. van Leeuwen, Ch. Chow, S. Beecham, M. Kamruzzaman, D. Wang, M. Drikas, R. Aryal, Removal of organic contaminants from river and reservoir waters by three different aluminum-based metal salts: coagulation adsorption and kinetics studies, Chem. Eng. J., 225 (2013) 394–405.
  36. D. Pernitsky, J. Edzwald, Selection of alum and polyaluminum coagulants: Principles and applications, J. Water Supply Res. Technol. AQUA, 55 (2006) 121–141.
  37. D. Pernitsky, J.K. Edzwald, Solubility of polyaluminum coagulants, J. Water Supply Res. Technol. AQUA, 52 (2003) 395–406.
  38. H. Tang, Z. Luan, Differences in coagulation efficiencies between PACl and PICl, J. Am. Water Works Assn., 1 (2003) 79–86.
  39. A.L. Kowal, M. Świderska-Bróż, Oczyszczanie Wody, PWN 2008.
  40. M. Szlachta, W. Adamski, Assessing efficiency of natural organic matter removal from water by coagulation, Ochrona Środowiska, 30 (2008) 9–13.
  41. I. Krupińska, Effect of temperature and pH on the effectiveness of pollutant removal from groundwater in the process of coagulation, Ochrona Środowiska, 37 (2015) 35–42.
  42. B. Cao, B. Gao, X. Liu, M. Wang, Z. Yang, Q. Yue, The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment, Water Res., 45 (2011) 6181–6188.
  43. P. Pomastowski, E. Dziubakiewicz, B. Buszewski, Potencjał Zeta jego rola i znaczenie, Analityka, 2 (2012) 19–23 (in Polish).
  44. T. Tuhkanen, A. Ketonen, L. Gilberg, J. Jahela, Removal of different size fractions of natural organic matter in drinking water by optimized coagulation, Chem. Water Wastewater Treat., VII (2004) 201–208.
  45. Y.L. Cheng, R.J. Wong, J.Ch. Te Lin, Ch. Huang, D.J. Lee, J.Y. Lai, Pre-treatment of natural organic matters containing raw water using coagulation, Sep. Sci. Technol., 45 (2010) 911–919.
  46. K. Saxena, U. Brighu, A. Choudhary, Parameters affecting enhanced coagulation: a review, Environ. Technol. Rev., 7 (2018) 156–176.
  47. J.M. Sieliechi, G.J. Kayem, I. Sandu, Effect of water treatment residuals (aluminum and iron ions) on human health and drinking water distribution systems, Int. J. Conserv. Sci., 1 (2010) 175–182.
  48. N.K. Singh, S. Pandey, S. Singh, S. Singh, A.A. Kazmi, Post treatment of UASB effluent by using inorganic coagulants: role of zeta potential and characterization of solid residue, J. Environ. Chem. Eng., 4 (2016) 1495–1503.
  49. M. Sadrnourmohamadi, B. Gorczyca, Removal of dissolved organic carbon (DOC) from high doc and hardness water by chemical coagulation: relative importance of monomeric, polymeric, and colloidal aluminum species, Sep. Sci. Technol., 50 (2015) 2075–2085.
  50. E. Płuciennik-Koropczuk, P. Kumanowska, Chemical stability of water in the water supply network - preliminary research, Civ. Environ. Eng. Rep., 28 (2018) 79–89.
  51. A. Jakubaszek, J. Mossetty, Changes to water quality in the water supply network of Zielona Góra, Civ. Environ. Eng. Rep., 29 (2019) 92–101.
  52. Manufacturer’s Specification (Coagulants: Sodium Aluminate, Aluminium Sulphate (VI), PAX XL10 were Produced by Kemipol in Police Poland).
  53. B.B. Poter, Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water, USEPA, Cincinnati, 2005.
  54. International Standard, Water Quality—Examination and Determination of Colour, ISO 7887, 2011.
  55. M. Alkan, Ö Demirbas, M. Dogan, Electrokinetic properties of kaolinite in mono-and multivalent electrolyte solutions, Microporous Mesoporous Mater., 83 (2005) 51–59.
  56. T. Jesionowski, F. Ciesielczyk, A. Krysztafkiewicz, Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media, Mater. Chem. Phys., 119 (2010) 65–74.
  57. I. Krupińska, Removal of natural organic matter from groundwater by coagulation using prehydrolysed and non - prehydrolysed coagulants, Desal. Wat. Treat., 132 (2018) 244–252.
  58. Regulation of the Minister of Health dated December 7, 2017 Amending the Regulation on the Quality of Drinking Water Mean for Human Consumption (in Polish).
  59. I. Krupińska, Effect of organic substances on the efficiency of Fe(II) to Fe(III) oxidation and removal of iron compounds from groundwater in the sedimentation process, Civ. Environ. Eng. Rep., 26 (2017) 15–29.
  60. I. Krupińska, M. Świderska-Bróż, Effect of the presence of organic substances on the extent of iron compound removal from water via oxidation and sedimentation processes, Ochr Sr, 30 (2008) 3–7.