References

  1. D.M. Cooper, W.A. House, B. Reynolds, S. Hughes, L. May, B. Gannon, The phosphorus budget of the Thame catchment, Oxfordshire: 2. Modelling, Sci. Total Environ., 282–283 (2002) 435–457.
  2. C.A. Harguinteguy, A.F. Cirelli, L.M. Pignata, Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina), Microchem. J., 114 (2014) 111–118.
  3. M. Klavins, A. Briede, V. Rodinov, I. Kokorite, E. Parele, I. Klavina, Heavy metals in rivers of Latvia, Sci. Total Environ., 262 (2000) 175–183.
  4. I. Ali, C.K. Jain, Pollution potential of toxic metals in the Yamuna river at Delhi, India, J. Environ. Hydrol., 12 (2001) 1–9.
  5. A. Samecka-Cymerman, A.J. Kempers, Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry, Ecotoxicol. Environ. Saf., 59 (2003) 64–69.
  6. D. Demirezen, A. Aksoy, Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey), Chemosphere, 56 (2004) 685–696.
  7. A.T. Hejabi, H.T. Basavarajappa, Heavy metals partitioning in sediments of the Kabini River in South India, Environ. Monit. Assess., 185 (2013) 1273–1283.
  8. L. Polechońska, A. Klink, Trace metal bioindication and phytoremediation potentialities of Phalaris arundinacea L. (reed canary grass), J. Geochem. Explor., 146 (2014) 27–33.
  9. M.V. Kumar, B.D. Tripathi, Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes, Bioresour. Technol., 99 (2008) 7091–7097.
  10. D.M. Dong, H.L. Li, Y. Li, C.S. Fang, X.H. Li, C.Y. Xu, Distribution of heavy metals in the sediments from the Yitong River: Changchun Section, J. Soil Water Conserv., 11 (2004) 95–96.
  11. L. Marchand, F. Nsanganwimana, B.J. Cook, Y. Vystavna, F. Huneau, P. Le Coustumer, J.B. Lamy, N. Oustrière, M. Mench, Trace element transfer from soil to leaves of macrophytes along the Jalled’Eysines River, France and their potential use as contamination biomonitors, Ecol. Indic., 46 (2014) 425–437.
  12. I. Panfili, M.L. Bartucca, D. Del Buona, The treatment of duckweed with a plant biostimulant or a safener improves the plant capacity to clean water polluted by terbuthylazine, Sci. Total Environ.,1 (2019) 832–840.
  13. E. Skorbiłowicz, Studies upon Some Metals Distribution over the Aqueous Environment in Upper Narew River Catchment, Scientific Work nr 222, Białystok, Publishing House of the Białystok University of Technology, 2012. (In polish)
  14. A.J. Cardwell, D.W. Hawker, M. Greenway M. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia, Chemosphere, 48 (2002) 653–663.
  15. M. Fawzy, M. Badr, A. El-Khatib, A. Abo-El-Kassem, Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile, Environ. Monit. Assess., 184 (2012) 1753–1771.
  16. T. Sawidis, M.K. Chettri, G.A. Zachariadis, J.A. Stratis, Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece, Ecotoxicol. Environ. Saf., 32 (1995) 73–80.
  17. A. Sasmaz, E. Obekb, H. Hasar, The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent, Ecol. Eng., 33 (2008) 278–284.
  18. G. Bonanno, Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications, Ecotoxicol. Environ. Saf., 74 (1995) 1057–1064.
  19. G. Du Laing, F.M.G. Tack, M.G. Verloo, Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis), Anal. Chim. Acta., 497 (2003) 191–198.
  20. E. Skorbiłowicz, Macrophytes as indicators of heavy metals bio-accumulation in upper Narew River, Ecol. Chem. Eng. A, 21 (2014) 87–98.
  21. Z.W. Kundzewicz, Ecohydrology for Sustainable Wetlands under Global Change – Data, Models, Management, S. Ignar, P. Nowakowski, T. Okruszko, Eds., Wethydro – Center of Excellence in Wethland Hydrology, SGGW Publisher, Warszawa, 2003, pp. 25–35. (In Polish)
  22. M. Anaszko, S. Grocki, Protection of Resources and Values of the Natural Environment of the Biebrza Marshland, Studiaregionalne, 2(4), University of Economics Publisher, Białystok, 2001, pp. 9–54. (In Polish)
  23. A. Górniak, The Climate and Thermics of the Surfacewaters of the Biebrza Basin, Economy and Environment Publishing House, Białystok, 2004, pp. 345–362. (In Polish)
  24. I. Bojakowska, Criteria for assessing the pollution of water sediment, Geol. Rev., 49 (2001) 213–218. (In Polish)
  25. J. Lis, A. Pasieczna, Geochemical Atlas of Poland 1:2 500 000, Polish Geological Institute, Warszawa, 1995. (In Polish)
  26. Z. Mazej, M. Germ, Trace element accumulation and distribution in four aquatic macrophytes, Chemosphere, 74 (2009) 642–647.
  27. A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 3rd ed., CRC Press, Boca Raton, London, New York, Washington, D.C., 2001.
  28. B. Markert, Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems, Vegetatio, 103 (1992) 1–30.
  29. K.K. Turekian, K.H. Wedepohl, Distribution of the Elements in some major units of the Earth’s crust, GSA, Bulletin, 72 (1961) 175–192.
  30. G. Müller, Schwermetalle in den sedimenten des Rheins, Veranderungen Seit 1971 Umschau, 79 (1979) 778–783.
  31. C.S. Lee, X.D. Li, W.Z. Shi, S.C. Cheung, I. Thornton, Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics, Sci. Total Environ., 356 (2006) 45–61.
  32. D.W. Alberto, D.M. Del Pilar, A.M. Valerial, P.S. Fabianal, H.A. Cecilia, B.M. De Los Angeles, Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba-Argentina), Water Res., 35 (2001) 2881–2894.
  33. A. Astel, S. Tsakovski, P. Barbieri, V. Simeonov, Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets, Water Res., 41 (2007) 4566–4578.
  34. T.G. Kazi, M.B. Arain, M.K. Jamali, N. Jalbani, H.I. Afridi, R.A. Sarfraz, J.A. Baig, A.Q. Shah, Assessment of water quality of polluted lake using multivariate statistical techniques: a case study, Ecotoxicol. Environ. Saf., 72 (2009) 301–309.
  35. S. Shrestha, F. Kazama, Assessment of surface water quality using a multivariate statistical techniques: a case study of the Fuji river basin, Japan Environ. Modell. Software, 22 (2007) 464–475.
  36. L.G. Vardanyan, B.S. Ingole, Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems, Environ. Int., 32 (2006) 208–218.
  37. D. Baldantoni, A. Alfani, P. Di Tommasi, G. Bartoli, A.V. De Santo, Assessment of macro and microelement accumulation capability of two aquatic plants, Environ. Pollut., 130 (2004) 149–156.
  38. H. Vereecken, J. Baetens, P. Viaene, F. Mostaert, P. Meire, Ecological management of aquatic plants: effects in lowland streams, Hydrobiologia, 570 (2006) 205–210.
  39. J. Srivastava, A. Gupta, H. Chandra, Managing water quality with aquatic macrophytes, Rev. Environ. Sci. Biotechnol., 7 (2008) 255–266.
  40. A. Aksoy, D. Demirezen, F. Duman, Bioaccumulation, detection and analyses of heavy metal pollution in Sultan marsh and its environment, Water Air Soil Pollut., 164 (2005) 241–255.
  41. A. Parzycha, M. Cymer, The content of macro- and microelements in the shoots of Glyceria Maxima of the Słupia river, J. Ecol. Eng., 15 (2014) 29–36.
  42. E.I. Hozhina, A.A Khramov, P.A. Gerasimov, A.A. Kumarov, Uptake of heavy metals, arsenic and antymony by aquatic plants in the vicinity of ore mining and processing industries, J. Geochem. Explor., 74 (2001) 153–162.
  43. S.E. Allen, Analysis of Ecological Materials, 2nd ed., Blackwell Scientific Publications, Oxford, 1986.
  44. A. Parzych, M. Cymer, J. Jonczak, S. Szymczyk, The ability of leaves and rhizomes of aquatic plants to accumulate macro- and micronutrients, J. Ecol. Eng., 16 (2015a) 198–205.
  45. M.L. Otte, D.L. Jacob, Chemical fingerprinting of plants from contrasting wetlands - salt marsh, geothermal and mining impacted, Phyton, 45 (2005) 303–316.
  46. E.M. Eid, K.H. Shaltout, M.A. El-Sheikh, T. Asaeda, Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): perspectives for phytoremediation, Flora, 207 (2012) 783–794.
  47. M.M. Abreu, E.S. Santos, M.C.F. Magalhães, E. Fernandes, Trace elements tolerance, accumulation and translocation in Cistus populifolius, Cistus salviifolius and their hybrid growing in polymetallic contaminated mine areas, J. Geochem. Explor., 123 (2012) 52–60.
  48. Y. Jia, L. Wang, Z. Qu, Z. Yang, Distribution, contamination and accumulation of heavy metals in water, sediments, and freshwater shellfish from Liuyang River, Southern China, Environ. Sci. Pollut. Res., 25 (2018) 7012–7020.
  49. D.D. MacDonald, C.G. Ingersoll, T.A. Berger, Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Arch. Environ. Contam. Toxicol., 39 (2000) 20–31.
  50. L. Ma, Z. Yang, L. Li, L. Wang, Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China, Environ. Sci. Pollut. Res., 23 (2016) 17058–17066.
  51. T. Kowalkowski, R. Zbytniewski, J. Szpejna, B. Buszewski, Application of chemometrics in river water classification, Water Res., 40 (2006) 744–752.
  52. Y. Ouyang, P. Nkedi-Kizzab, Q.T. Wu, D. Shinde, C.H. Huang, Assessment of seasonal variations in surface water quality, Water Res., 40 (2006) 3800–3810.
  53. S. Shrestha, F. Kazama, Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan Environ. Modell. Software, 22 (2007) 464–475.
  54. F. Zhou, G.H. Huang, H. Guo, W. Zhang, Z. Hao, Spatiotemporal patterns and source apportionment of coastal water pollution in eastern Hong Kong, Water Res., 41 (2007) 3429–3439.
  55. E. Adamiec, Traffic-related metals as sources of urban environment pollution: a case study of Kraków, Poland, WIT Trans. Ecol. Environ., 214 (2017) 81–89.
  56. E.M.E. Alsbou, O.A. Al-Khashman, Heavy metal concentrations in roadside soil and street dust from Petra region, Jordan, Environ. Monit. Assess., 190 (2017) 48.
  57. Q. Zhang, Z.W. Li, G.M. Zeng, J.B. Li, Y. Fang, Q.S. Yuan, Y.M. Wang, F.Y. Ye, Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China, Environ. Monit. Assess., 152 (2009) 123–131.