References

  1. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  2. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017) 2782–2799.
  3. Y. Zhu, W. Fana, T. Zhou, X. Li, Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms, Sci. Total Environ., 678 (2019) 253–266.
  4. R.S. Alfarra, N.E. Ali, M.M. Yusoff, Removal of heavy metals by natural adsorbent: review, Int. J. Biosci., 4 (2014) 130–139.
  5. M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia, 50 (2014) 113–120.
  6. İ. Uzun, F. Güzel, Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents, Turk. J. Chem., 24 (2000) 291–297.
  7. A.S. Thajeel, Isotherm, kinetic and thermodynamic of adsorption of heavy metal ions onto local activated carbon, Aquat. Sci. Technol., 1 (2013) 53–77.
  8. I.A. Aguayo-Villarreal, A. Bonilla-Petriciolet, R. Muñiz-Valencia, Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions, J. Mol. Liq., 230 (2017) 686–695.
  9. V.B. Yadav, R. Gadi, S. Kalra, Clay based nanocomposites for removal of heavy metals from water: a review, J. Environ. Manage., 232 (2019) 803–817.
  10. A. Roy, J. Bhattacharya, Removal of Cu(II), Zn(II) and Pb(II) from water using microwave-assisted synthesized maghemite nanotubes, Chem. Eng. J., 211–212 (2012) 493–500.
  11. S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal, J. Environ. Manage., 91 (2010) 2238–2247.
  12. S. Rajput, C.U. Pittman Jr., D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interface Sci., 468 (2016) 334–346.
  13. N. Ilankoon, Use of iron oxide magnetic nanosorbents for Cr(VI) removal from aqueous solutions: a review, Int. J. Eng. Res. Appl., 4 (2014) 55–63.
  14. L. Giraldo, A. Erto, J.C. Moreno-Piraján, Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization, Adsorption, 19 (2013) 465–474.
  15. V.K. Gupta, S. Agarwal, T.A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Res., 45 (2011) 2207–2212.
  16. N. Khare, J. Bajpai, A.K. Bajpai, Graphene coated iron oxide (GCIO) nanoparticles as efficient adsorbent for removal of chromium ions: preparation, characterization and batch adsorption studies, Environ. Nanotechnol. Monit. Manage., 10 (2018) 148–162.
  17. H.V. Tran, L.D. Tran, T.N. Nguyen, Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Mater. Sci. Eng., C, 30 (2010) 304–310.
  18. D. Hritcu, G. Dodi, M.I. Popa, Heavy metal ions adsorption on chitosan-magnetite microspheres, Int. Rev. Chem. Eng., 4 (2012) 364–368.
  19. H. Yong-Mei, C. Man, H. Zhong-Bo, Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater., 184 (2010) 392–399.
  20. Y. Liu, L. Chen, Y. Li, P. Wang, Y. Dong, Synthesis of magnetic polyaniline/graphene oxide composites and their application in the efficient removal of Cu(II) from aqueous solutions, J. Environ. Chem. Eng. 4 (2016) 825–834.
  21. A.R. Mahdavian, M.A.-S. Mirrahimi, Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification, Chem. Eng. J., 159 (2010) 264–271.
  22. M.R. Lasheen, I.Y. El-Sherif, S.T. El-Wakeel, D.Y. Sabry, M.F. El-Shahat, Heavy metals removal from aqueous solution using magnetite Dowex 50WX4 resin nanocomposite, J. Mater. Environ. Sci., 8 (2017) 503–511.
  23. M. Bobik, I. Korus, L. Dudek, The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions, Arch. Environ. Prot., 43 (2017) 3–9.
  24. J.F. Liu, S.Z. Zhao, G.B. Jiang, Coating Fe3O4 magnetite nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol., 42 (2008) 6949–6954.
  25. Z. Yu, C. Zhang, Z. Zheng, L. Hu, X. Li, Z. Yang, C. Ma, G. Zeng, Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid, Appl. Surf. Sci., 403 (2017) 413–425.
  26. M.A. Blesa, E.B. Borghi, A.J.G. Maroto, A.E. Regazzoni, Adsorption of EDTA and iron—EDTA complexes on magnetite and the mechanism of dissolution of magnetite by EDTA, J. Colloid Interface Sci., 98 (1984) 295–305.
  27. X. Xue, K. Hanna, C. Despas, F. Wu, N. Deng, Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH, J. Mol. Catal. A: Chem., 311 (2009) 29–35.
  28. E. Potapova, X. Yang, M. Grahn, A. Holmgren, S.P.E. Forsmo, A. Fredriksson, J. Hedlund, The effect of calcium ions, sodium silicate and surfactant on charge and wettability of magnetite, Colloids Surf., A, 386 (2011) 79–86.
  29. E. Potapova, R. Jolsterå,·A. Holmgren, M. Grahn, The effect of inorganic ions on dodecylbenzenesulfonate adsorption onto hematite: an ATR-FTIR study, J. Surfactants Deterg., 17 (2014) 1027–1034.
  30. Q. Li, L. Sun, Y. Zhang, Y. Qian, J. Zhai, Characteristics of equilibrium, kinetics studies for adsorption of Hg(II) and Cr(VI) by polyaniline/humic acid composite, Desalination, 266 (2011) 188–194.
  31. S. Zhang, Z. Wang, H. Chen, C. Kai, M. Jiang, Q. Wang, Z. Zhou, Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal, Appl. Surf. Sci., 440 (2018) 1277–1285.