References

  1. USGS, Mineral Commodity Summaries, Chromium Statistics and Information, U.S. Geological Survey, February 2019. Available at: https://www.usgs.gov/centers/nmic/chromiumstatistics-and-information (accessed on 2019.11.18).
  2. A. Bielański, Foundations of Inorganic Chemistry, Vol. 2, Polish Scientific Publishers PWN, Warsaw, 2002 (in Polish).
  3. B. Bartkiewicz, Treatment of Industrial Wastewater, Polish Scientific Publishers PWN, Warsaw, 2002 (in Polish).
  4. J.H. Zhang, Y.N. Xu, Y.G. Wu, S.H. Hu, Y.J. Zhang, Dynamic characteristics of heavy metal accumulation in the farmland soil over Xiaoqinling gold-mining region, Shaanxi, China, Environ. Earth Sci., 78 (2019), https://doi.org/10.1007/s12665-018-8013-2.
  5. H.Q. Wu, Q.P. Wu, J.M. Zhang, Q.H. Gu, L.T. Wei, W.P. Guo, M.H. He, Chromium ion removal from raw water by magnetic iron composites and Shewanella oneidensis MR-1, Sci. Rep., 9 (2019) 3687.
  6. J.R. Dojlido, Chemistry of Surface Waters, Economy and Environment Publishers, Białystok, 1995 (in Polish).
  7. International Agency for Research on Cancer (IARC), IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Overall Evaluation of Car-cinogenicity, An Updating of IARC Monographs, Vol. 1–42, Supplement 7, WHO, Lyon, 1987.
  8. K.K. Krishnani, S. Ayyappan, Heavy metals remediation of water using plants and lignocellulosic agrowastes, Rev. Environ. Contam. Toxicol., 188 (2006) 59–84.
  9. C.E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater., 223–224 (2012) 1–12.
  10. S.J. Wu, F.G. Fu, Z.H. Cheng, B. Tang, Removal of Cr(VI) from wastewater by FeOOH supported on Amberlite IR120 resin, Desal. Water Treat., 57 (2016) 17767–17773.
  11. K. Anarakdim, M. Matos, O. Senhadji-Kebiche, M. Benamor, Optimization of hexavalent chromium removal by emulsion liquid membrane (ELM) using sunflower oil as eco-friendly solvent, Desal. Water Treat., 72 (2017) 281–289.
  12. S. Sadeghi, M.R.A. Moghaddam, M. Arami, Improvement of electrocoagulation process on hexavalent chromium removal with the use of polyaluminum chloride as coagulant, Desal. Water Treat., 52 (2014) 4818–4829.
  13. J. Lach, Chromium adsorption from waters of different chemical composition, Inżynieria i Ochrona Środowiska, 19 (2016) 353– 362 (in Polish).
  14. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (2019) 145–155.
  15. V.K. Gupta, A. Rastogi, Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass, J. Hazard. Mater., 154 (2008) 347–354.
  16. M.N. Sahmoune, K. Louhab, A. Boukhiar, Advanced biosorbents materials for removal of chromium from water and wastewaters, Environ. Prog. Sustainable Energy, 30 (2011) 284–293.
  17. N.A. Kabbashi, A.H. Nour, M. Al-Khatib, M.A. Maleque, Removal of Chromium with CNT Coated Activated Carbon for Waste Water Treatment, Reference Module in Materials Science and Materials Engineering, Elsevier, Amsterdam, 2019.
  18. A.Y. Orbak, I. Orbak, Effective factor analysis for chromium(VI) removal from aqueous solutions and its application to Tunçbilek lignite using design of experiments, J. Chem., 2019 (2019), https://doi.org/10.1155/2019/1263735.
  19. R. de Abreu Domingos, F.V. da Fonseca, Evaluation of adsorbent and ion exchange resins for removal of organic matter from petroleum refinery wastewaters aiming to increase water reuse, J. Environ. Manage., 214 (2018) 362–369.
  20. M.S.H. Hashemi, F. Eslami, R. Karimzadeh, Organic contaminants removal from industrial wastewater by CTAB treated synthetic zeolite Y, J. Environ. Manage., 233 (2019) 785–792.
  21. E. Álvarez-Ayuso, A. García-Sánchez, X. Querol, Purification of metal electroplating waste waters using zeolites, Water Res., 37 (2003) 4855–4862.
  22. Y. Wu, Y. Zhang, J. Qian, X. Xin, S. Hu, S. Zhang, J. Wei, An exploratory study on low-concentration hexavalent chromium adsorption by Fe(III)-cross-linked chitosan beads, R. Soc. Open Sci., 4 (2017) 170905.
  23. P.M.B. Chagas, L.B. de Carvalho, A.A. Caetano, F.G.E. Nogueira, A.D. Corrêa, I.R. Guimarães, Nanostructured oxide stabilized by chitosan: hybrid composite as an adsorbent for the removal of chromium (VI), J. Environ. Chem. Eng., 6 (2018) 1008–1019.
  24. M. Dakiky, M. Khamis, A. Manassra, M. Mer’eb, Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents, Adv. Environ. Res., 6 (2002) 533–540.
  25. S. Nag, A. Mondal, N. Bar, S.K. Das, Biosorption of chromium (VI) from aqueous solutions and ANN modelling, Environ. Sci. Pollut. Res. Int., 23 (2017) 18817–18835.
  26. M.H. Dehghani, D. Sanaei, I. Ali, A. Bhatnagar, Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies, J. Mol. Liq., 215 (2016) 671–679.
  27. V.K. Gupta, I. Ali, Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste, J. Colloid Interface Sci., 271 (2004) 321–328.
  28. T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran, J. Kandasamy, R. Naidu, Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies, Chem. Eng. J., 270 (2015) 393–404.
  29. A. Alemu, B. Lemma, N. Gabbiy, Adsorption of chromium (III) from aqueous solution using vesicular basalt rock, Cogent Environ. Sci., 5 (2019) 1650416.
  30. A. Alemu, B. Lemma, N. Gabbiye, M.T. Alula, M.T. Desta, Removal of chromium (VI) from aqueous solution using vesicular basalt: a potential low cost wastewater treatment system, Heliyon, 4 (2018) e00682.
  31. E. Alemayehu, S. Thiele-Bruhn, B. Lennartz, Adsorption behaviour of Cr(VI) onto macro and micro-vesicular volcanic rocks from water, Sep. Purif. Technol., 78 (2011) 55–61.
  32. K.G. Bhattacharyya, S.S. Gupta, Adsorption of chromium(VI) from water by clays, Ind. Eng. Chem. Res., 45 (2006) 7232–7240.
  33. S.S. Gupta, K.G. Bhattacharyya, Adsorption of heavy metals on kaolinite and montmorillonite: a review, Phys. Chem. Chem. Phys., 14 (2012) 6698–6723.
  34. T.A. Khan, V.V. Singh, Removal of cadmium (II), lead (II), and chromium (VI) ions from aqueous solution using clay, Toxicol. Environ. Chem., 92 (2010) 1435–1446.
  35. J. Liu, X. Wu, Y. Hu, C. Dai, Q. Peng, D. Liang, Effects of Cu(II) on the adsorption behaviors of Cr(III) and Cr(VI) onto kaolin, J. Chem., 2016 (2016), https://doi.org/10.1155/2016/3069754.
  36. J.H. Potgieter, S.S. Potgieter-Vermaak, P.D. Kalibantonga, Heavy metals removal from solution by palygorskite clay, Miner. Eng., 19 (2006) 463–470.
  37. S. Tahir, R. Naseem, Removal of Cr(III) from tannery wastewater by adsorption onto bentonite clay, Sep. Purif. Technol., 53 (2007) 312–321.
  38. J. Wang, Q. Qin, S. Hu, K. Wu, A concrete material with waste coal gangue and fly ash used for farmland drainage in high groundwater level areas, J. Cleaner Prod., 112 (2016) 631–638.
  39. Z.B. Yu, H.T. Peng, Y.D. Zhu, J. Li, Q. Zhao, M.H. You, X.P. Zhang, Technical Feasibility Study of Unfired Brick with Coal Gangue at the Wulanmulun Site, Inner Mongolia, China, P. Chen, Ed., Material Science and Environmental Engineering, Taylor & Francis Group, London, 2016, pp. 263–266.
  40. Statistics Poland. Available at: https://stat.gov.pl/obszarytematyczne/srodowisko-energia/srodowisko/ochronasrodowiska-2018,1,19.html (accessed 30.05.2019).
  41. Grupa Kapitałowa Lubelski Węgiel Bogdanka, Integrated Report 2017. Available at: https://www.lw.com.pl/file,21938,raport_ zintegrowany_20171.pdf (accessed 2019.03.25) (in Polish).
  42. K. Niedbalska, Using of selected methods of testing the hydrogeological properties of rocks for predicting the impact of open pit reclamation using mining wastes on the condition of groundwater, Górnictwo Odkrywkowe, 59 (2018) 39–43 (in Polish).
  43. L.J. Yu, Y.L. Feng, W. Yan, The current situation of comprehensive utilization of coal gangue in China, Adv. Mater. Res., 524–527 (2012) 915–918.
  44. B. Jabłonska, A.V. Kityk, M. Busch, P. Huber, The structural and surface properties of natural and modified coal gangue, J. Environ. Manage., 190 (2017) 80–90.
  45. B. Jabłońska, Sorption of phenol on rock components occurring in mine drainage water sediments, Int. J. Miner. Process., 104– 105 (2012) 71–79.
  46. K.M. Skarżyńska, Coal Mining Waste and its Use in Civil Engineering, Agricultural University Publishers, Cracow, 1997 (in Polish).
  47. B. Jabłońska, E. Siedlecka, Removing heavy metals from wastewaters with use of shales accompanying the coal beds, J. Environ. Manage., 155 (2015) 58–66.
  48. E. Myślińska, Laboratoryjne badania gruntów i gleb, Wyd. Uniwersytetu Warszawskiego, Warszawa, 2010 (in Polish).
  49. Regulation of the Minister of the Environment of September 9, 2002 on Soil Quality Standards and Soil Quality Standards (Journal of Laws of 2002 No. 165, item 1359) (in Polish).
  50. F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids Principles, Methodology and Applications, Academic Press, London, 1999.
  51. F. Wang, S. Li, Determination of the surface fractal dimension for porous media by capillary condensation, Ind. Eng. Chem. Res., 36 (1997) 1598–1602.
  52. S.S. Tripathy, S.B. Kanungo, Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5M NaCl and major ion sea water on a mixture of δ-MnO2 and amorphous FeOOH, J. Colloid Interface Sci., 284 (2005) 30–38.
  53. ASTM D1687–17, Standard Test Methods for Chromium in Water, ASTM International, West Conshohocken, PA, 2017. Available at: www.astm.org.
  54. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters, J. Hazard. Mater., 147 (2007) 381–394.
  55. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models than more than two parameters, J. Hazard. Mater., 147 (2007) 401–411.
  56. Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis, J. Mol. Liq., 277 (2019) 646–648.
  57. Z. Shang, L.W. Zhang, X. Zhao, S. Liu, D. Li, Removal of Pb(II), Cd(II) and Hg(II) from aqueous solution by mercapto-modified coal gangue, J. Environ. Manage., 231 (2019) 391–396.
  58. K.G. Bhattacharyya, S.S. Gupta, Adsorption of Fe(III) from water by natural and acid activated clays: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Adsorption, 12 (2006) 185–204.
  59. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  60. L.K. Cabatingan, R.C. Agapay, J.L.L. Rakels, M. Ottens, L.A.M. van der Wielen, Potential of biosorption for the recovery of chromate in industrial wastewaters, Ind. Eng. Chem. Res., 40 (2001) 2302–2309.
  61. P. Miretzky, A.F. Cirelli, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review, J. Hazard. Mater., 180 (2010) 1–19.
  62. M.R. Panuccio, A. Sorgona, M. Rizzo, G. Cacco, Cadmium adsorption on vermiculite, zeolite and pumice: batch experimental studies, J. Environ. Manage., 90 (2009) 364–374.
  63. E.M. Kalhori, K. Yetilmezsoy, N. Uygur, M. Zarrabi, R.M.A. Shmeis, Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA), Appl. Surf. Sci., 287 (2013) 428–442.
  64. A.R. Rahmani, M. Foroughi, Z.N. Motlagh, S. Adabi, Hexavalent chromium adsorption onto fire clay, Avicenna J. Environ. Health Eng., 3 (2016) 5029.
  65. D. Kratochvil, P. Pimentel, B. Volesky, Removal of trivalent and hexavalent chromium by seaweed biosorbent, Environ. Sci. Technol., 32 (1998) 2693–2698.
  66. M. Aoyama, M. Kishino, T.-S. Jo, Biosorption of Cr (VI) on Japanese cedar bark, Sep. Sci. Technol., 39 (2005) 1149–1162.
  67. J.G. Parsons, M. Hejazi, K.J. Tiemann, J. Henning, J.L. Gardea- Torresdey, An XAS study of the binding of copper(II), zinc(II), chromium(III) and chromium(VI) to hops biomass, Microchem. J., 71 (2002) 211–219.
  68. J. Kyzioł, Clay Minerals as Heavy Metal Sorbents, Zakład Narodowy im. Ossolińskich, Polish Academy of Sciences, Wrocław, 1994 (in Polish).
  69. V.E. Pakade, N.T. Tavengwa, L.M. Madikizela, Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods, RSC Adv., 9 (2019) 26142–26164.
  70. I. Ghorbel-Abid, A. Jrad, K. Nahdi, M. Trabelsi-Ayadi, Sorption of chromium (III) from aqueous solution using bentonitic clay, Desalination, 246 (2009) 595–604.
  71. S. Fan, Y. Wang, Y. Li, J. Tang, Z. Wang, J. Tang, X. Li, K. Hu, Facile synthesis of tea waste/Fe3O4 nanoparticle composite for hexavalent chromium removal from aqueous solution, RSC Adv., 7 (2017) 7576–7590.
  72. E. Petala, K. Dimos, A. Douvalis, T. Bakas, J. Tucek, R. Zbořil, M.A. Karakassides, Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 261 (2013) 295–306.
  73. Y.C. Sharma, C.H. Weng, Removal of chromium(VI) from water and wastewater by using riverbed sand: kinetic and equilibrium studies, J. Hazard. Mater., 142 (2007) 449–454.
  74. J. Kulczycka, R. Uberman, M. Cholewa, Analiza kosztów i korzyści zagospodarowania odpadów z górnictwa węgla kamiennego, Studia Ekonomiczne, 166 (2014) 272–282.
  75. www.technologie-budowlane.com/Granulat_hydroizolacyjny_SS100___WATERSTOPPAGE-3-346-9_31_18-.html (accessed on December 7, 2019).
  76. https://biogo.pl/pl/p/ZIEMIA-OKRZEMKOWAAMORFICZNA-DIATOMIT-1-kg-WIADERKO-PERMAGUARD/21572 (accessed on December 7, 2019).
  77. https://kwbbelchatow.pgegiek.pl/Oferta/Kopaliny-i-kruszywa (accessed on December 7, 2019).
  78. https://www.magicznyogrod.pl/zeolit_-_klinoptylolit.html (accessed on December 7, 2019).
  79. http://water-house.pl/z%C5%82o%C5%BCa-filtracyjne/509-w%C4%99giel-aktywny-1kg.html (accessed on December 7, 2019).