References
- USGS, Mineral Commodity Summaries, Chromium Statistics
and Information, U.S. Geological Survey, February 2019.
Available at: https://www.usgs.gov/centers/nmic/chromiumstatistics-and-information (accessed on 2019.11.18).
- A. Bielański, Foundations of Inorganic Chemistry, Vol. 2,
Polish Scientific Publishers PWN, Warsaw, 2002 (in Polish).
- B. Bartkiewicz, Treatment of Industrial Wastewater, Polish
Scientific Publishers PWN, Warsaw, 2002 (in Polish).
- J.H. Zhang, Y.N. Xu, Y.G. Wu, S.H. Hu, Y.J. Zhang, Dynamic
characteristics of heavy metal accumulation in the farmland soil
over Xiaoqinling gold-mining region, Shaanxi, China, Environ.
Earth Sci., 78 (2019), https://doi.org/10.1007/s12665-018-8013-2.
- H.Q. Wu, Q.P. Wu, J.M. Zhang, Q.H. Gu, L.T. Wei, W.P. Guo,
M.H. He, Chromium ion removal from raw water by magnetic
iron composites and Shewanella oneidensis MR-1, Sci. Rep.,
9 (2019) 3687.
- J.R. Dojlido, Chemistry of Surface Waters, Economy and
Environment Publishers, Białystok, 1995 (in Polish).
- International Agency for Research on Cancer (IARC), IARC
Monographs on the Evaluation of Carcinogenic Risks to
Humans: Overall Evaluation of Car-cinogenicity, An Updating
of IARC Monographs, Vol. 1–42, Supplement 7, WHO, Lyon,
1987.
- K.K. Krishnani, S. Ayyappan, Heavy metals remediation of
water using plants and lignocellulosic agrowastes, Rev. Environ.
Contam. Toxicol., 188 (2006) 59–84.
- C.E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, A review of
chemical, electrochemical and biological methods for aqueous
Cr(VI) reduction, J. Hazard. Mater., 223–224 (2012) 1–12.
- S.J. Wu, F.G. Fu, Z.H. Cheng, B. Tang, Removal of Cr(VI) from
wastewater by FeOOH supported on Amberlite IR120 resin,
Desal. Water Treat., 57 (2016) 17767–17773.
- K. Anarakdim, M. Matos, O. Senhadji-Kebiche, M. Benamor,
Optimization of hexavalent chromium removal by emulsion
liquid membrane (ELM) using sunflower oil as eco-friendly
solvent, Desal. Water Treat., 72 (2017) 281–289.
- S. Sadeghi, M.R.A. Moghaddam, M. Arami, Improvement of
electrocoagulation process on hexavalent chromium removal
with the use of polyaluminum chloride as coagulant, Desal.
Water Treat., 52 (2014) 4818–4829.
- J. Lach, Chromium adsorption from waters of different chemical
composition, Inżynieria i Ochrona Środowiska, 19 (2016) 353–
362 (in Polish).
- G. Crini, E. Lichtfouse, Advantages and disadvantages of
techniques used for wastewater treatment, Environ. Chem.
Lett., 17 (2019) 145–155.
- V.K. Gupta, A. Rastogi, Sorption and desorption studies
of chromium (VI) from nonviable cyanobacterium Nostoc
muscorum biomass, J. Hazard. Mater., 154 (2008) 347–354.
- M.N. Sahmoune, K. Louhab, A. Boukhiar, Advanced biosorbents
materials for removal of chromium from water and
wastewaters, Environ. Prog. Sustainable Energy, 30 (2011)
284–293.
- N.A. Kabbashi, A.H. Nour, M. Al-Khatib, M.A. Maleque,
Removal of Chromium with CNT Coated Activated Carbon for
Waste Water Treatment, Reference Module in Materials Science
and Materials Engineering, Elsevier, Amsterdam, 2019.
- A.Y. Orbak, I. Orbak, Effective factor analysis for chromium(VI)
removal from aqueous solutions and its application to Tunçbilek
lignite using design of experiments, J. Chem., 2019 (2019),
https://doi.org/10.1155/2019/1263735.
- R. de Abreu Domingos, F.V. da Fonseca, Evaluation of adsorbent
and ion exchange resins for removal of organic matter from
petroleum refinery wastewaters aiming to increase water reuse,
J. Environ. Manage., 214 (2018) 362–369.
- M.S.H. Hashemi, F. Eslami, R. Karimzadeh, Organic contaminants
removal from industrial wastewater by CTAB treated
synthetic zeolite Y, J. Environ. Manage., 233 (2019) 785–792.
- E. Álvarez-Ayuso, A. García-Sánchez, X. Querol, Purification
of metal electroplating waste waters using zeolites, Water Res.,
37 (2003) 4855–4862.
- Y. Wu, Y. Zhang, J. Qian, X. Xin, S. Hu, S. Zhang, J. Wei, An
exploratory study on low-concentration hexavalent chromium
adsorption by Fe(III)-cross-linked chitosan beads, R. Soc. Open
Sci., 4 (2017) 170905.
- P.M.B. Chagas, L.B. de Carvalho, A.A. Caetano, F.G.E. Nogueira,
A.D. Corrêa, I.R. Guimarães, Nanostructured oxide stabilized
by chitosan: hybrid composite as an adsorbent for the removal
of chromium (VI), J. Environ. Chem. Eng., 6 (2018) 1008–1019.
- M. Dakiky, M. Khamis, A. Manassra, M. Mer’eb, Selective
adsorption of chromium(VI) in industrial wastewater using
low-cost abundantly available adsorbents, Adv. Environ. Res.,
6 (2002) 533–540.
- S. Nag, A. Mondal, N. Bar, S.K. Das, Biosorption of chromium
(VI) from aqueous solutions and ANN modelling, Environ. Sci.
Pollut. Res. Int., 23 (2017) 18817–18835.
- M.H. Dehghani, D. Sanaei, I. Ali, A. Bhatnagar, Removal of
chromium(VI) from aqueous solution using treated waste
newspaper as a low-cost adsorbent: kinetic modeling and
isotherm studies, J. Mol. Liq., 215 (2016) 671–679.
- V.K. Gupta, I. Ali, Removal of lead and chromium from
wastewater using bagasse fly ash—a sugar industry waste,
J. Colloid Interface Sci., 271 (2004) 321–328.
- T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran,
J. Kandasamy, R. Naidu, Simultaneous adsorption of Cd, Cr,
Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and
fixed-bed column studies, Chem. Eng. J., 270 (2015) 393–404.
- A. Alemu, B. Lemma, N. Gabbiy, Adsorption of chromium
(III) from aqueous solution using vesicular basalt rock, Cogent
Environ. Sci., 5 (2019) 1650416.
- A. Alemu, B. Lemma, N. Gabbiye, M.T. Alula, M.T. Desta,
Removal of chromium (VI) from aqueous solution using
vesicular basalt: a potential low cost wastewater treatment
system, Heliyon, 4 (2018) e00682.
- E. Alemayehu, S. Thiele-Bruhn, B. Lennartz, Adsorption
behaviour of Cr(VI) onto macro and micro-vesicular volcanic
rocks from water, Sep. Purif. Technol., 78 (2011) 55–61.
- K.G. Bhattacharyya, S.S. Gupta, Adsorption of chromium(VI)
from water by clays, Ind. Eng. Chem. Res., 45 (2006) 7232–7240.
- S.S. Gupta, K.G. Bhattacharyya, Adsorption of heavy metals on
kaolinite and montmorillonite: a review, Phys. Chem. Chem.
Phys., 14 (2012) 6698–6723.
- T.A. Khan, V.V. Singh, Removal of cadmium (II), lead (II), and
chromium (VI) ions from aqueous solution using clay, Toxicol.
Environ. Chem., 92 (2010) 1435–1446.
- J. Liu, X. Wu, Y. Hu, C. Dai, Q. Peng, D. Liang, Effects of Cu(II)
on the adsorption behaviors of Cr(III) and Cr(VI) onto kaolin,
J. Chem., 2016 (2016), https://doi.org/10.1155/2016/3069754.
- J.H. Potgieter, S.S. Potgieter-Vermaak, P.D. Kalibantonga, Heavy
metals removal from solution by palygorskite clay, Miner. Eng.,
19 (2006) 463–470.
- S. Tahir, R. Naseem, Removal of Cr(III) from tannery wastewater
by adsorption onto bentonite clay, Sep. Purif. Technol., 53 (2007)
312–321.
- J. Wang, Q. Qin, S. Hu, K. Wu, A concrete material with waste
coal gangue and fly ash used for farmland drainage in high
groundwater level areas, J. Cleaner Prod., 112 (2016) 631–638.
- Z.B. Yu, H.T. Peng, Y.D. Zhu, J. Li, Q. Zhao, M.H. You,
X.P. Zhang, Technical Feasibility Study of Unfired Brick with
Coal Gangue at the Wulanmulun Site, Inner Mongolia, China,
P. Chen, Ed., Material Science and Environmental Engineering,
Taylor & Francis Group, London, 2016, pp. 263–266.
- Statistics Poland. Available at: https://stat.gov.pl/obszarytematyczne/srodowisko-energia/srodowisko/ochronasrodowiska-2018,1,19.html (accessed 30.05.2019).
- Grupa Kapitałowa Lubelski Węgiel Bogdanka, Integrated Report
2017. Available at: https://www.lw.com.pl/file,21938,raport_
zintegrowany_20171.pdf (accessed 2019.03.25) (in Polish).
- K. Niedbalska, Using of selected methods of testing the
hydrogeological properties of rocks for predicting the impact
of open pit reclamation using mining wastes on the condition
of groundwater, Górnictwo Odkrywkowe, 59 (2018) 39–43
(in Polish).
- L.J. Yu, Y.L. Feng, W. Yan, The current situation of comprehensive
utilization of coal gangue in China, Adv. Mater. Res., 524–527
(2012) 915–918.
- B. Jabłonska, A.V. Kityk, M. Busch, P. Huber, The structural
and surface properties of natural and modified coal gangue,
J. Environ. Manage., 190 (2017) 80–90.
- B. Jabłońska, Sorption of phenol on rock components occurring
in mine drainage water sediments, Int. J. Miner. Process., 104–
105 (2012) 71–79.
- K.M. Skarżyńska, Coal Mining Waste and its Use in Civil
Engineering, Agricultural University Publishers, Cracow, 1997
(in Polish).
- B. Jabłońska, E. Siedlecka, Removing heavy metals from
wastewaters with use of shales accompanying the coal beds,
J. Environ. Manage., 155 (2015) 58–66.
- E. Myślińska, Laboratoryjne badania gruntów i gleb, Wyd.
Uniwersytetu Warszawskiego, Warszawa, 2010 (in Polish).
- Regulation of the Minister of the Environment of September
9, 2002 on Soil Quality Standards and Soil Quality Standards
(Journal of Laws of 2002 No. 165, item 1359) (in Polish).
- F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders
and Porous Solids Principles, Methodology and Applications,
Academic Press, London, 1999.
- F. Wang, S. Li, Determination of the surface fractal dimension
for porous media by capillary condensation, Ind. Eng. Chem.
Res., 36 (1997) 1598–1602.
- S.S. Tripathy, S.B. Kanungo, Adsorption of Co2+, Ni2+, Cu2+ and
Zn2+ from 0.5M NaCl and major ion sea water on a mixture
of δ-MnO2 and amorphous FeOOH, J. Colloid Interface Sci.,
284 (2005) 30–38.
- ASTM D1687–17, Standard Test Methods for Chromium in
Water, ASTM International, West Conshohocken, PA, 2017.
Available at: www.astm.org.
- O. Hamdaoui, E. Naffrechoux, Modeling of adsorption
isotherms of phenol and chlorophenols onto granular activated
carbon. Part I. Two-parameter models and equations allowing
determination of thermodynamic parameters, J. Hazard. Mater.,
147 (2007) 381–394.
- O. Hamdaoui, E. Naffrechoux, Modeling of adsorption
isotherms of phenol and chlorophenols onto granular activated
carbon. Part II. Models than more than two parameters, J.
Hazard. Mater., 147 (2007) 401–411.
- Q. Hu, Z. Zhang, Application of Dubinin–Radushkevich
isotherm model at the solid/solution interface: a theoretical
analysis, J. Mol. Liq., 277 (2019) 646–648.
- Z. Shang, L.W. Zhang, X. Zhao, S. Liu, D. Li, Removal of Pb(II),
Cd(II) and Hg(II) from aqueous solution by mercapto-modified
coal gangue, J. Environ. Manage., 231 (2019) 391–396.
- K.G. Bhattacharyya, S.S. Gupta, Adsorption of Fe(III) from water
by natural and acid activated clays: studies on equilibrium
isotherm, kinetics and thermodynamics of interactions, Adsorption,
12 (2006) 185–204.
- M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier,
F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption
of gases, with special reference to the evaluation of surface
area and pore size distribution (IUPAC Technical Report),
Pure Appl. Chem., 87 (2015) 1051–1069.
- L.K. Cabatingan, R.C. Agapay, J.L.L. Rakels, M. Ottens,
L.A.M. van der Wielen, Potential of biosorption for the recovery
of chromate in industrial wastewaters, Ind. Eng. Chem. Res.,
40 (2001) 2302–2309.
- P. Miretzky, A.F. Cirelli, Cr(VI) and Cr(III) removal from
aqueous solution by raw and modified lignocellulosic materials:
a review, J. Hazard. Mater., 180 (2010) 1–19.
- M.R. Panuccio, A. Sorgona, M. Rizzo, G. Cacco, Cadmium
adsorption on vermiculite, zeolite and pumice: batch experimental
studies, J. Environ. Manage., 90 (2009) 364–374.
- E.M. Kalhori, K. Yetilmezsoy, N. Uygur, M. Zarrabi,
R.M.A. Shmeis, Modeling of adsorption of toxic chromium
on natural and surface modified lightweight expanded clay
aggregate (LECA), Appl. Surf. Sci., 287 (2013) 428–442.
- A.R. Rahmani, M. Foroughi, Z.N. Motlagh, S. Adabi, Hexavalent
chromium adsorption onto fire clay, Avicenna J. Environ.
Health Eng., 3 (2016) 5029.
- D. Kratochvil, P. Pimentel, B. Volesky, Removal of trivalent
and hexavalent chromium by seaweed biosorbent, Environ.
Sci. Technol., 32 (1998) 2693–2698.
- M. Aoyama, M. Kishino, T.-S. Jo, Biosorption of Cr (VI) on
Japanese cedar bark, Sep. Sci. Technol., 39 (2005) 1149–1162.
- J.G. Parsons, M. Hejazi, K.J. Tiemann, J. Henning, J.L. Gardea-
Torresdey, An XAS study of the binding of copper(II), zinc(II),
chromium(III) and chromium(VI) to hops biomass, Microchem.
J., 71 (2002) 211–219.
- J. Kyzioł, Clay Minerals as Heavy Metal Sorbents, Zakład
Narodowy im. Ossolińskich, Polish Academy of Sciences,
Wrocław, 1994 (in Polish).
- V.E. Pakade, N.T. Tavengwa, L.M. Madikizela, Recent advances
in hexavalent chromium removal from aqueous solutions by
adsorptive methods, RSC Adv., 9 (2019) 26142–26164.
- I. Ghorbel-Abid, A. Jrad, K. Nahdi, M. Trabelsi-Ayadi, Sorption
of chromium (III) from aqueous solution using bentonitic clay,
Desalination, 246 (2009) 595–604.
- S. Fan, Y. Wang, Y. Li, J. Tang, Z. Wang, J. Tang, X. Li, K. Hu,
Facile synthesis of tea waste/Fe3O4 nanoparticle composite for
hexavalent chromium removal from aqueous solution, RSC
Adv., 7 (2017) 7576–7590.
- E. Petala, K. Dimos, A. Douvalis, T. Bakas, J. Tucek, R. Zbořil,
M.A. Karakassides, Nanoscale zero-valent iron supported on
mesoporous silica: characterization and reactivity for Cr(VI)
removal from aqueous solution, J. Hazard. Mater., 261 (2013)
295–306.
- Y.C. Sharma, C.H. Weng, Removal of chromium(VI) from water
and wastewater by using riverbed sand: kinetic and equilibrium
studies, J. Hazard. Mater., 142 (2007) 449–454.
- J. Kulczycka, R. Uberman, M. Cholewa, Analiza kosztów i
korzyści zagospodarowania odpadów z górnictwa węgla
kamiennego, Studia Ekonomiczne, 166 (2014) 272–282.
- www.technologie-budowlane.com/Granulat_hydroizolacyjny_SS100___WATERSTOPPAGE-3-346-9_31_18-.html (accessed on
December 7, 2019).
- https://biogo.pl/pl/p/ZIEMIA-OKRZEMKOWAAMORFICZNA-DIATOMIT-1-kg-WIADERKO-PERMAGUARD/21572 (accessed on December 7, 2019).
- https://kwbbelchatow.pgegiek.pl/Oferta/Kopaliny-i-kruszywa
(accessed on December 7, 2019).
- https://www.magicznyogrod.pl/zeolit_-_klinoptylolit.html
(accessed on December 7, 2019).
- http://water-house.pl/z%C5%82o%C5%BCa-filtracyjne/509-w%C4%99giel-aktywny-1kg.html (accessed on December 7, 2019).