References

  1. D. Papciak, B. Tchórzewska-Cieślak, K. Pietrucha-Urbanik, A. Pietrzyk, Analysis of the biological stability of tap water on basis of risk analysis and parameters limiting the secondary growth of microorganisms in water distribution system, Desal. Wat. Treat., 117 (2018) 1–8.
  2. E.I. Prest, F. Hammes, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges, Front. Microbiol., 7 (2016) 1–24.
  3. M. Wolska, Removal of nutrients in the technology of purification of water intended for human consumption, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2015.(in Polish).
  4. M.W. LeChevallier, N.E. Shaw, L.A. Kaplan, T.L. Bott, Development of a rapid assimilable organic carbon method for water, Appl. Environ. Microbiol., 59 (1993) 1526–1531.
  5. M.W. LeChevallier, N.J. Welch, D.B. Smith, Full-scale studies of factors related to coliform regrowth in drinking water, Appl. Environ. Microbiol., 62 (1996) 2201–2211.
  6. M.W. Lechevallier, T.M. Evans, R.M. Seidler, Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water, Appl. Environ. Microbiol., 42 (1981) 159–167.
  7. R. Boe-Hansen, H.-J. Albrechtsen, E. Arvin, C. Jørgensen, Dynamics of biofilm formation in a model drinking water distribution system, J. Water Supply. Res. Technol., 51 (2002) 399–406.
  8. N.B. Hallam, J.R. West, C.F. Forster, J. Simms, The potential for biofilm growth in water distribution systems, Water Res., 35 (2001) 4063–4071.
  9. J. Łomotowski, Z. Siwoń, Assessing the chemical stability of tap water by means of the software for ionic composition simulation, Ochrona Środowiska, 4 (2004) 13–16 (In Polish).
  10. T. Dippong, C. Mihali, G. Ardelean, Seasonal variation of physico-chemical parameters in the drinking water supply network of satu city, NW Romania, EEMJ, 18 (2019) 1–10.
  11. T. Dippong, C. Mihali, D. Năsui, Z. Berinde, C. Butean, Assessment of water physicochemical parameters in the Strîmtori-Firiza Reservoir in Northwest Romania, Water Environ. Res., 90 (2018) 220–233.
  12. Z. Tsvetanova, Quantification of the bacterial community of drinking water-associated biofilms under different flow velocities and changing chlorination regimes, Appl. Water Sci., 10 (2020) 1–11.
  13. T. Dippong, C. Mihali, E. Cical, A. Avram, Influence of precipitation quantities on the strâmtorifiriza raw water quality indicators, Stud. Univ. Babes-Bol. Chem., 61 (2016) 251–262.
  14. M. Łebkowska, E. Pajor, A. Rutkowska-Narożniak, M. Kwietniewski, J. Wąsowski, D. Kowalski, Microbial growth in cement-lined ductile cast-iron water-pipe networks, Ochrona Środowiska, 33 (2011) 9–13. Available online: http://www.os.not.pl/docs/czasopismo/2011/3–2011/Lebkowska_3-2011.pdf (accessed on 7 May 2019) (in Polish).
  15. B. Kołwzan, Analysis of biofilms - their formation and functioning, Ochrona Środowiska, 33 (2011) 3–14. Available online: http://www.pzits.not.pl/docs/Kolwzan.pdf (accessed on 1 May 2019) (in Polish).
  16. M.J. Lehtola, I.T. Miettinen, M.M. Keinanen, T.K. Kekki, O. Laine, A. Hirvonen, T. Vartiainen, P.J. Martikainen, Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes, Water Res., 38 (2004) 3769–3779.
  17. T.M. Traczewska, M. Sitarska, Substrate physical structure impact on the development of biofilm, Ochrona przed korozją, 55 (2012) 15–19 (in Polish).
  18. M. Szczotko, B. Krogulska, A. Krogulski, W. Kurzątkowski, M. Staniszewska, Biofilm on the surface of materials contacting with drinking water. Comparison of structure and growth rate, Gaz, Woda i Technika Sanitarna, 11 (2012) 498–502 (in Polish).
  19. J. Yu, D. Kim, T. Lee, Microbial diversity in biofilms on water distribution pipes of different materials, Water Sci. Technol., 61 (2010) 163–171.
  20. M.J. Lethola, I.T. Miettinen, T. Lampola, A. Hirvonen, T. Vartiainen, P.J. Martikainen, Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems, Water Res., 39 (2005) 1962–1971.
  21. M. Bucheli-Witschel, S. Kötzsch, S. Darr, R. Widler, T. Egli, A new method to assess the influence of migration from polymeric materials on the biostability of drinking water, Water Res., 46 (2012) 4246–4260.
  22. T.M. Traczewska, M. Sitarska, I. Biedroń, Ecological and technical aspects of the formation of biofilms in water, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2014 (in Polish).
  23. D. Papciak, J. Kaleta, A. Puszkarewicz, B. Tchórzewska-Cieślak, The use of biofiltrationproces to remove organic matter from groundwater, J. Ecol. Eng., 17 (2016) 119–124.
  24. A. Pietrzyk, D. Papciak, The influence of water treatment technology on the process of biofilm formation on the selected installation materials, JCEEA, XXXIV, 64 (2/II/17) (2017) 131–143.
  25. I. Douterelo, M. Jackson, C. Solomon, J. Boxall, Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality, Appl. Microbiol. Biotechnol., 100 (2016) 3301–3311.
  26. D. Kowalski, B. Kowalska, M. Kwietniewski, Analysis of changes in chlorine concentration for the purpose of water quality modeling in a water supply network. Conference materials on New technologies in water supply and sewage networks and installations, The Silesian Technical University, Institute of Water and Wastewater Engineering, Gliwice, 2012, pp. 35–50.
  27. A. Deb, S. B. McCammon, J. Snyder, A. Dietrich, Impacts of lining materials on water quality, Water Research Foundation and Drinking Water Inspectorate USA, 2010.
  28. J. Falkinham, A. Pruden, M. Edwards, Opportunistic premise plumbing pathogens: increasingly important pathogens in drinking water, Pathogens, 4 (2015) 373–386.
  29. J.P.S. Cabral, Water microbiology. Bacterial pathogens and water, Int. J. Environ. Res. Public Health, 7 (2010) 3657–3703.
  30. K. Pietrucha-Urbanik, B. Tchórzewska-Cieślak, D. Papciak, I. Skrzypczak, Analysis of chemical stability of tap water in terms of required level of technological safety, Arch. Environ. Prot., 43 (2017) 3–12.
  31. T. Dippong, C. Mihali, M-A. Hoaghia, E. Cical, A. Cosma, Chemical modeling of groundwater quality in the aquifer of Seini town – Someș Plain, Northwestern Romania, Ecotoxicol. Environ. Saf., 168 (2019) 88–101.
  32. M. Wolska, M. Mołczan, Stability Assessment of Water Introduced into the Water Supply Network, Ochrona Środowiska, 37 (2015) 51–56.
  33. I. Skoczko, E. Szatyłowicz. Treatment Method Assessment of the Impact on the Corrosivity and Aggressiveness for the Boiler Feed Water, Water, 11 (2019) 1965.
  34. C. Chu, C. Lu, Effects of acetic acid on the regrowth of heterotrophic bacteria in the drinking water distribution system, World J. Microbiol. Biotechnol., 21 (2005) 989–998.
  35. M. Lehtola, Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water, Water Res., 35 (2001) 1635–1640.
  36. M.J. Lehtola, M. Laxander, I.T. Miettinen, A. Hirvonen, T. Vartiainen, P.J. Martikainen, The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes, Water Res., 40 (2006) 2151–2160.
  37. T.M. Traczewska, M. Sitarska, Synthetic materials as a substrate for the development of biofilms in water distribution systems, Ecotoxicology in environmental protection: collective work: Matt. II Conf. Sciences, Szklarska Poręba, 2017, pp. 443–450.
  38. J. Zamorska, Biological Stability of Water after the Biofiltration Process, J. Ecol. Eng., 19 (2018) 234–239.
  39. K. Lautenschlager, N. Boon, Y. Wang, T. Egli, F. Hammes, Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition, Water Res., 44 (2010) 4868–4877.
  40. D. Van der Kooij, Potential for biofilm development in drinking water distribution systems, J. Appl. Microbiol., 85 (1999) 39–44.
  41. J. Łomotowski, Reasons for Changes in Water Quality in Water Supply Systems, Monographs of the Institute of Systemic Research of the Polish Academy of Sciences. System Test Series, Vol. 55, 2007.
  42. Guidelines for Drinking-Water Quality, Fourth Edition Incorporating the First Addendum; https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng.pdf;jsessionid=72D49BCC93BEB968B 6E9B742650B10D9?sequence=1 (Accessed on 2 November 2019).
  43. A. Francisque, M. Rodriguez, L.F. Miranda-Moreno, R. Sadiq, F. Proulx, Modeling heterotrophic bacteria counts in a water distribution system, Water Res., 43 (2009) 1075–1087.
  44. D. Mara, N. Horan, Handbook of Water and Wastewater Microbiology. Academic Press, London, 2003.
  45. J. Wingender, H.C. Flemming, Biofilms in drinking water and their role as reservoir for pathogens, Int. J. Hyg. Environ. Health, 214 (2011) 417–423.
  46. A. Grabińska-Łoniewska, E. Siński, Pathogenic and potentially pathogenic microorganisms in aquatic ecosystems and water supply networks, Wydaw. Seidel-Przywecki Sp. z o.o., Warsaw, 2010 (In Polish).
  47. A. Sokołowska, K. Olańczuk-Neyman, Microbiological water quality in the water-pipe network of the Gdańsk district, Ochrona Środowiska, 31 (2009) 15–19. Available online: file:///C:/Users/HP/Downloads/Sokolowska_4-2009.pdf (Accessed on 2 May 2019) (in Polish).
  48. S. Chowdhury, Heterotrophic bacteria in drinking water distribution system: a review, Environ. Monit. Assess., 184 (2012) 6087–6137.
  49. L.P. Waines, R. Moateb, A.J. Moodya, M. Allenc, G. Bradleya, The effect of material choice on biofilm formation in a model warm water distribution system, Biofouling, 27 (2011) 1161–1174.
  50. T. Schwartz, S. Hoffmann, U. Obst, Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems, Water Res., 32 (1998) 2787–2797.
  51. J. Inkinen, T. Kaunisto, A. Pursiainen, I.T. Miettinen, J. Kusnetsov, K. Riihinen, M.M. Keinänen-Toivola, Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study, Water Res., 1 (2014) 83–91.