References

  1. J. Antonić, E. Heath, Determination of NSAIDs in river sediment samples, Anal. Bioanal. Chem., 387 (2007) 1337–1342.
  2. A. Szymonik, J. Lach, K. Malińska, Fate and removal of pharmaceuticals and illegal drugs present in drinking water and wastewater, Ecol. Chem. Eng. S., 24 (2017) 65–85.
  3. J. Lach, L. Stępniak, A.Ociepa-Kubicka, Antibiotics in the environment as one of the barriers to sustainable development, Probl. Ekorozw., 13 (2018) 197–207.
  4. V. Gabet-Giraud, C. Miège, R. Jacquet, M. Coquery, Impact of wastewater treatment plants on receiving surface waters and a tentative risk evaluation: the case of estrogens and beta blockers, Environ. Sci. Pollut. Res., 21 (2014) 1708–1722.
  5. M. Scheurer, M. Ramil, C.D. Metcalfe, S. Groh, T.A. Ternes, The challenge of analyzing beta-blocker drugs in sludge and wastewater, Anal. Bioanal. Chem., 396 (2010) 845–856.
  6. R. Rosal, I. Rodea-Palomares, K. Boltes, F. Fernández-Piñas, F. Leganés, S. Gonzalo, A. Petre, Ecotoxicity assessment of lipid regulators in water and biologically treated wastewater using three aquatic organisms, Environ. Sci. Pollut. Res., 17 (2010) 135–144.
  7. P. Calza, C. Medana, E. Padovano, V. Giancotti, C. Minero, Fate of selected pharmaceuticals in river waters, Environ. Sci. Pollut. Res., 20 (2013) 2262–2270.
  8. P. Rezka, W. Balcerzak, The occurrence of non-steroidal antiinflammatory drugs in wastewater and water environment and methods of their removal-selected issue, Arch. Waste Manage. Environ. Protect., 17 (2015) 33–38.
  9. W.C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, Environ. Pollut., 187 (2014) 193–201.
  10. J. Ebele, M. A-E. Abdallach, S. Harrad, Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment, Emerg. Contam., 3 (2017) 1–16.
  11. C. Nebot, R. Falcon, K.G. Boyd, S.W. Gibb, Introduction of human pharmaceuticals from wastewater treatment plants into the aquatic environment: a rural perspective, Environ. Sci. Pollut. Res., 22 (2015) 10559–10568.
  12. A. Helenkar, A. Sebők, G. Zaray, et al., The role of the acquisition methods in the analysis of the non-steroidal antiinflammatory drugs in Danube River by gas chromatography – mass spectrometry, Talanta, 82 (2010) 600–607.
  13. A.S. Stasinakis, S. Mermigka, V.G. Samaras, E. Farmaki, N.S. Thomaidis, Occurrence of endocrine disrupters and selectedpharmaceuticals in Aisonas River (Greece)and environmental risk assessment using hazard indexes, Environ. Sci. Pollut. Res., 19 (2012) 1574–1583.
  14. I. Baranowska, B. Kowalski, A Rapid UHPLC Method for the simultaneous determination of drugs from different therapeutic groups in surface water and wastewater, Bull. Environ. Contam. Toxicol., 89 (2012) 8–14.
  15. Y. Valcárcel, A.S. González, J.L. Rodríguez-Gil, R. Maroto, A. Gil, M. Catalá, Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain, Chemosphere, 82 (2011) 1062–1071.
  16. C. Zwiener, Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment, Anal. Bioanal. Chem., 387 (2007) 1159–1162.
  17. R. Loos, B.M. Gawlik, G. Locoro, R. Rimaviciute, S. Contini, C Bidoglio, EU-wide survery of polar organic persistent pollutants in Europen river waters, Environ. Pollut., 157 (2009) 561–568.
  18. P.H. Roberts, K.V. Thomas, The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment, Sci. Total Environ., 356 (2006) 143–153.
  19. A. Tauxe-Wuersch, L.F.D. Alencastro, D. Grandjean, J. Tarradellas, Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment, Water Res., 39 (2005) 1761–1772.
  20. P.M. Thomas, G.D. Foster, Determination of nonsteroidal antiinflammatory drugs, caffeine and triclosan in wastewater by gas chromatography-mass spectrometry, J. Environ. Sci. Health A, 39 (2004) 1969–1978.
  21. T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett., 131 (2002) 5–17.
  22. L. Lonappan, S.K. Brar, R.K. Das, M. Verma, R.Y. Surampalli, Diclofenac and its transformation products: environmental occurrence and toxicity - a review, Environ. Int., 96 (2016) 127–138.
  23. M. Klavarioti, D. Mantzavinos, D. Kassinos. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  24. S. Schmidt, H. Hoffmann, L.A. Garbe, R.J. Schneider, Liquid chromatography-tandem mass spectrometry detection of diclofenac and related compounds in water samples, J. Chromatogr. A, 1538 (2018) 112–116.
  25. L.J. Oaks, M. Gilbert, M.Z. Virani, R.T. Watson, C.U. Meteyer, B.A. Rideout, H.L. Shivaprasad, S. Ahmed, M.J.I. Chaudhry, M. Arshad, S. Mahmood, A. Ali, A.A. Khan, Diclofenac residues as the cause of vulture population decline in Pakistan, Nature, 427 (2004) 630–633.
  26. K. Fent, Effects of Pharmaceuticals on Aquatic Organisms. Pharmaceuticals in Environment, Springer, Berlin, Heidelberg, 2008, pp. 175–203.
  27. B. Hoeger, B. Köllner, D.R. Dietrich, B. Hitzfeld, Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario) Aquat. Toxicol., 75 (2005) 53–64.
  28. R. Triebskorn, H. Casper, A. Heyd, R. Eikemper, H.R. Köhler, J. Schwaiger, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss), Aquat. Toxicol., 68 (2004) 151–166.
  29. Y. Zhang, S.U. Geißen, C. Gal, Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies, Chemosphere, 73 (2008) 1151–1161.
  30. A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments, Anal. Bioanal. Chem., 387 (2007) 1225–1234.
  31. P.C. Lindholm-Lehto, H.S.J. Ahkola, J.S. Knuutinen, S.H. Herve, Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland, Environ. Sci. Pollut. Res., 23 (2016) 7985–7997.
  32. J.M. Brozinski, M. Lahti, A. Meierjohann, A. Oikari, L. Kronberg, The anti-inflammatory drugs diclofenac, naproxen an ibuprofen are found in the bile of wild fish caught downstream of a wastewater plant, Environ. Sci. Technol., 47 (2013) 342–348.
  33. L. Patrolecco, S. Capri, N. Ademollo, Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters, Environ. Sci. Pollut. Res., 22 (2015) 5864–5876.
  34. L. Mandaric, E. Diamantini, E. Stella, K. Cano-Paoli, J. Valle- Sistac, D. Molins-Delgado, A. Bellin, G. Chiogna, B. Majone, M.S. Diaz-Cruz, S. Sabater, D. Barcelo, M. Petrovic, Contamination sources and distribution patterns of pharmaceuticals and personal care products in alpine rivers strongly affected by tourism, Sci. Total Environ., 590–591 (2017) 484–494.
  35. L. Minguez, J. Pedelucq, E. Farcy, C. Ballandonne, H. Budzinski, M-P Halm-Lemeille, Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France, Environ. Sci. Pollut. Res., 23 (2016) 4992–5001.
  36. A. Chiffre, F. Degiorgi, A. Bulete, L. Spinner, P.M. Badot, Occurrence of pharmaceuticals in WWTP effluents and their impact in a karstic rural catchment of eastern France, Environ. Sci. Pollut. Res., 23 (2016) 25427–25441.
  37. L. Mijangos, H. Ziarrusta, O. Ros, L. Kortazar, L.A. Fernandez, M. Olivares, O. Zuloaga, A. Prieto, N. Etxebarria, Occurrence of emerging pollutants in estuaries of the Basque Country: analysis of sources and distribution, and assessment of the environmental risk. Water Res., 147 (2018) 152–163.
  38. P. Lacina, L. Mravcová, M. Vávrová, Application of comprehensive two-dimensional gas chromatography with mass spectrometric detection for the analysis of selected drug residues in wastewater and surface water, J. Environ. Sci., 25 (2013) 204–212.
  39. W. Meyer, M. Reich, S. Beier, J. Behrendt, H. Gulyas, R. Otterpohl, Measured and predicted environmental concentrations of carbamazepine, diclofenac, and metoprolol in small and medium rivers in northern Germany, Environ. Monit. Assess., 188 (2016) 487.
  40. A.S. Stasinakis, S. Mermigka, V.G. Samaras, E. Farmaki, N.S. Thomaidis, Occurrence of endocrine disrupters and selected pharmaceuticals in Aisonas River (Greece) and environmental risk assessment using hazard indexes, Environ. Sci. Pollut. Res., 19 (2012) 1574–1583.
  41. C.I. Nannou, C.I. Kosma, T.A. Albanis, occurrence of pharmaceuticals in surface waters: analytical method development and environmental risk assessment, Int. J. Environ. Anal. Chem., 95 (2015) 1242–1262.
  42. J.C.G. Souse, A.R. Ribeiro, M.O. Barbosa, C. Ribeiro, M.E. Pereira, A.M.T. Silva, Monitoring of the 17 EU watch list contaminants of emerging concern in the Ave and the Sousa Rivers, Sci. Total Environ., 649 (2019) 1083–1095.
  43. R. Troger, P. Klockner, L. Ahrens, K. Wiberg, Micropollutants in drinking water from source to tap-Method development and application of a multiresidue screening method, Sci. Total Environ., 627 (2018) 1404–1432.
  44. A. Zgoła-Grzeskowiak, Application of DLLME to isolation and concentration of non-steroidal anti-inflammatory drugs in environmental water samples, Chromatographia, 72 (2010) 671–678.
  45. F. Kozisek, I. Pomykacova, H. Jeligova, V. Cadek, V. Svobodova, Survey of human pharmaceuticals in drinking water in the Czech Republic, J. Water Health, 11 (2013) 84–97.
  46. O.A. Jones, J.N. Lester, N. Voulvoulis, Pharmaceuticals: a threat to drinking water? Trends Biotechnol., 23 (2005) 163–167.
  47. P.E. Stackelberg, E.T. Furlong, M.T. Meyer, S.D. Zaugg, A.K. Henderson, D.B. Reissman, Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant, Sci. Total. Environ., 329 (2004) 99–113.
  48. Y. Li, L. Zhang, J. Ding, Ranking and prioritizing pharmaceuticals in the aquatic environment of China, Sci. Total Environ., 658 (2019) 333–342.
  49. M.S. Diniz, R. Salgado, V.J. Pereira, G. Carvalho, A. Oehmen, M.A.M. Reis, J.P. Noronha, Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio), Sci. Total Environ., 505 (2015) 282–289.
  50. B.N. Bhadra, I. Ahmed, S. Kim, S.H. Jhung, Adsorptive removal of ibuprofen and diclofenac from water using metalorganic framework-derived porous carbon, Chem. Eng. J., 314 (2017) 50–58.
  51. S. Larous, A-H. Meniai, Adsorption of diclofenac from aqueous solution using activated carbon prepared from olive stones, Int. J. Hydrogen Energy, 41 (2016) 10380–10390.
  52. J.L. Sotelo, G. Ovejero, A. Rodriguez, S. Alvarez, J. Galan, J. Garcia, Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon, Chem. Eng. J., 240 (2014) 443–453.
  53. B.Y.Z. Hiew, L.Y. Lee, K.C.L. Lai, S. Gan, S. Thangalazhy- Gopakumar, G.T. Pan, T.C. Yang, Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies, Environ. Res., 168 (2019) 241–253.
  54. M.A.E. de Franco, C.B.de Carvalho, M.M. Bonetto, R. de PelegriniSoares, L.A. Féris, Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: isotherms, thermodynamic study and breakthrough curves modelling, J. Clean. Prod., 181 (2018) 145–154.
  55. B.N. Bhadra, P.W. Seo, S.H. Jhung, Adsorption of diclofenac sodium from water using oxidized activated carbon, Chem. Eng. J., 301 (2016) 27–34.
  56. A.O.A. El Naga, M. El Saied, S.A. Shaban, F.Y. El Kady, Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon, J. Mol. Liq., 285 (2019) 9–19.
  57. M. Malhotra, S. Suresh, A. Garg, Tea waste derived activated carbon for the adsorption of sodium diclofenac from wastewater: adsorbent characteristics, adsorption isotherms, kinetics, and thermodynamics, Environ. Sci. Pollut. Res. Int., 25 (2018) 32210–32220.
  58. M.J. Ahmed, Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review, J. Environ. Manage., 190 (2017) 274–282.
  59. C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thue, L.D.T. Prola, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, G.L. Dotto, Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents, J. Hazard, Mater, 289 (2015) 18–27.
  60. J. Choma, M. Jaroniec, Review of fundamental adsorption methods for evaluation surface and structural properties of activated carbon, Ochr. Sr., 27 (2005) 3–8.
  61. G. Horvath, K. Kawazoe, Method for the calculation of effective pore size distribution in molecular sieve carbon, J. Chem. Eng. Jpn., 16 (1983) 470–475.
  62. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  63. M. Pakuła, S. Biniak, A. Świątkowski, S. Neffe, Influence of progressive surface oxidation of nitrogen-containing carbon on its electrochemical behaviour in phosphate buffer solutions, Carbon, 40 (2002) 1873–1881.
  64. J. Lach, Adsorption of chloramphenicol on commercial and modified activated carbons, Water, 11 (2019) 1141.
  65. N.T. Abdel-Ghani,G.A. El-Chaghaby, E-S.A. Rawash, E.C. Lima, Adsorption of coomassie brilliant blue R-250 dye onto novel activated carbon prepared from Nigella sativa L. waste: equilibrium, kinetics and thermodynamics running title: adsorption of Brilliant Blue dye onto Nigella sativa L. waste activated carbon, J. Chil. Chem. Soc., 62 (2017) 3505–3511.
  66. H.N. Tran, S-J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  67. R.M.D.G. de Luna, Murniati, W. Budianta, K.K.P. Riviera, R.O. Arazo, Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks, J. Environ. Chem. Eng., 5 (2017) 1465–1474.
  68. J. Pujol, The solution of nonlinear inverse problems and the Levenberg-Marquardt method, Geophysics, 72 (2007) 1–16.
  69. M.B. Ahmed, J.L. Zhoua, H.H. Ngo, W. Guoa, M.A.H. Johir, D. Belhaj, Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment, Bioresour. Technol., 238 (2017) 306–312.
  70. W. Płaziński, W. Rudziński, Adsorption kinetics at solid/solution interfaces the meaning of the pseudo-first- and pseudo-secondorder equations, Wiadomości Chemiczne, 65 (2011) 1055–1067.
  71. E. Soco, J. Kalembkiewicz, Effect of chemical modification of the coal fly ash onto adsorption of lead(II) ions in the presence of cadmium(II) ions in a single and Bi-component system, Eng. Prot. Environ., 19 (2016) 81–95 (in Polish).
  72. S. Jodeh, F. Abdelwaha, N. Jaradat, I. Warad, W. Jodeh, Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon, J. Assoc. Arab Univ. Basic Appl. Sci., 20 (2016) 32–38.
  73. H.J. An, B.N. Bhadra, N.A. Khan, S.H. Jhung, Adsorptive removal of wide range of pharmaceutical and personal care products from water by using metal azolate framework-6-derived porous carbon, Chem. Eng. J., 343 (2018) 447–454.