References

  1. S. Myszograj, The impact of temperature on the removal of nitrogen compounds in an activated sludge system, Curr. J. Appl. Sci. Technol., 11 (2015) 1–13.
  2. M. Włodarczyk-Makuła, PAHs balance in the solid and liquid phase of sewage sludge during fermentation process, J. Environ. Sci. Health, Part A, 43 (2008) 1602–1609.
  3. T. Ahmad Mohammad, M. Johari, M. Mohd Noor, A. Halim Ghazali, Assessment of using synthetic polymers in dewatering of sewage sludge, Desal. Water Treat., 57 (2016) 23308–23317.
  4. G.A. Ekama, M.C. Wenzel, Denitrification kinetics in biological N and P removal activated sludge systems treating municipal wastewater, Water Sci. Technol., 39 (1999) 69–77.
  5. A. Szaja, J.A. Aguilar, G. Łagód, Estimation of chemical oxygen demand fractions of municipal wastewater by respirometric method - case study, Annu. Set Environ. Prot., 17 (2015) 289–299.
  6. E. Płuciennik-Koropczuk, S. Myszograj, New approach in COD fractionation methods, Water, 11 (2019) 1484.
  7. A.M.E. Viana da Silva, R.J.N. Bettencourt da Silva, M. Filomena, G.F.C. Camões, Optimization of the determination of chemical oxygen demand in wastewaters, Anal. Chem. Acta, 699 (2011) 161–169.
  8. G.A. Baquero-Rodríguez, J.A. Lara-Borrero, J. Martelo, A simplified method for estimating chemical oxygen demand (COD) fractions, Water Pract. Technol., 11 (2016) 838–848.
  9. S. Myszograj, E. Płuciennik-Koropczuk, A. Jakubaszek, A. Świętek, COD fractions - methods of measurement and use in wastewater treatment technology, Civ. Environ. Eng. Rep., 24 (2017) 195–206.
  10. ATV-A 131-The Dimensioning of Single-Stage Sewage Treatment Plants with Activated Sludge, German ATV-DVWK Rules, and Standards, Hennef, German, 2000.
  11. J.P. van der Hoek, R. Duijff, O. Reinstra, Nitrogen recovery from wastewater: possibilities, competition with other resources and adaptation pathways, Sustainability, 10 (2018) 4605.
  12. M. Zahra, A. Abooalfazl, D. Mansooreh, Stabilization, and dewatering of wastewater treatment plants sludge using combined bio/Fenton-like oxidation process, Dry. Technol., 35 (2016) 545–552.
  13. S. Skinner, L. Dixon, D. Hillis, P. Rees, C. Wall, R. Cavalida, R. Usher, S. Stickland, A. Scales, Quantification of wastewater sludge dewatering, Water Res., 82 (2015) 2–13.
  14. M.C. Wentzel, G.A. Ekama, P.L. Dold, G. Marais, Biological excess phosphorus removal - steady-state process design., Water SA, 16 (1990) 29–48.
  15. J. Kappeler, W. Gujer, Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modeling, Water Sci. Technol., 25 (1992) 125–139.
  16. S. Sözen, E.U. Çokgör, D. Ohron, M. Henze, Respirometric analysis of activated sludge behavior – II, Heterotrophic growth under aerobic and anoxic conditions, Water Res., 32 (1998) 476–488.
  17. E. Płuciennik-Koropczuk, A. Jakubaszek, A.S. Myszograj, S. Uszakiewicz, COD fractions in mechanical-biological wastewater treatment plant, Civ. Environ. Eng. Rep., 24 (2017) 207–217.
  18. G.A. Ekama, P.L. Dold, G.V.R. Marais, Procedures for determining influent COD, Fractions and the maximum species growth rate of heterotrophs in activated sludge systems, Water Sci. Technol., 18 (1986) 94 –114.
  19. M. Henze, Biological Wastewater Treatment: Principles Modeling and Design; M. Henze, M.C.M. van Loosdrecht, G.A. Ekama, D. Brdjanovic, Eds., IWA Publishing, London, UK, 2008.
  20. K. Ignatowicz, Analysis of COD fractions in raw wastewater flowing into small and large wastewater treatment plants, J. Ecol. Eng., 20 (2019) 197–201.