References
- W.M. Moszczyński, A. Białek, T. Jakubas, J. Peć, Production
of 4-chloro-2-methylphenoxyacetic acid in Organika-Sarzyna
at Nowa Sarzyna. An example of the cooperation between
an R&D institute and a chemical company, Przem. Chem., 89
(2010) 124–127 (in polish).
- WHO Document, MCPA in Drinking-Water, Background Document
for Development of WHO Guidelines for Drinking-Water
Quality, WHO/SDE/WSH/03.04/38, Geneva, Switzerland, 1996.
- WHO document, Chlorophenoxy Herbicides (Excluding 2,4-D
and MCPA) in Drinking-Water, Background Document for
Development of WHO Guidelines for Drinking-Water Quality,
WHO/SDE/WSH/03.04/44, Geneva, Switzerland, 1996.
- K.Y. Foo, B.H. Hameed, Detoxification of pesticide waste
via activated carbon adsorption process, J. Hazard. Mater.,
175 (2010) 1–11.
- B. Doczekalska, K. Kuśmierek, A. Świątkowski, M. Bartkowiak,
Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-
metylphenoxyacetic acid onto activated carbons derived from
various lignocellulosic materials, J. Environ. Sci. Health B,
53 (2018) 290–297.
- T.Y. Kim, S.S. Park, S.J. Kim, S.Y. Cho, Separation characteristics
of some phenoxy herbicides from aqueous solution, Adsorption,
14 (2008) 611–619.
- A. Derylo-Marczewska, M. Blachnio, A.W. Marczewski,
A. Swiatkowski, B. Tarasiuk, Adsorption of selected herbicides
from aqueous solutions on activated carbon, J. Therm. Anal.
Calorim., 101 (2010) 785–794.
- K. Kuśmierek, M. Sankowska, A. Świątkowski, Kinetic
and equilibrium studies of simultaneous adsorption of
monochlorophenols and chlorophenoxy herbicides on activated
carbon, Desal. Water Treat., 52 (2014) 178–183.
- W. Kaminski, K. Kusmierek, A. Swiatkowski, Sorption
equilibrium prediction of competitive adsorption of herbicides
2,4-D and MCPA from aqueous solution on activated carbon
using ANN, Adsorption, 20 (2014) 899–904.
- M.M. Abdeldaiem, J. Rivera-Utrilla, M. Sanchez-Polo,
R. Ocampo-Perez, Single, competitive, and dynamic adsorption
on activated carbon of compounds used as plasticizers and
herbicides, Sci. Total Environ., 537 (2015) 335–342.
- A. Spaltro, M. Pila, S. Simonetti, S. Álvarez-Torrellas,
J.G. Rodríguez, D. Ruiz, A.D. Compañy, A. Juan, P. Allegretti,
Adsorption and removal of phenoxy acetic herbicides from
water by using commercial activated carbons: experimental and
computational studies, J. Contam. Hydrol., 218 (2018) 84–93.
- O. Gimeno, P. Plucinski, S.T. Kolaczkowski, Removal of the
herbicide MCPA by commercial activated carbons: equilibrium,
kinetics, and reversibility, Ind. Eng. Chem. Res., 42 (2003)
1076–1086.
- A. Białek, K. Kuśmierek, A. Świątkowski, Adsorption and
desorption of 2-cresol, 4-chloro-2-cresol and 2-methyl-4-
chlorophenoxyacetic acid on activated carbons, Przem. Chem.,
97 (2018) 1158–1162 (in polish).
- K. Ignatowicz-Owsieniuk, I. Skoczko, Dependence of sorption
of phenoxyacetic herbicides on their physico-chemical
properties, Pol. J. Environ. Stud., 11 (2002) 339–344.
- M. Yang, J. Hubble, A.D. Lockett, R.R. Rathbone, Thermal
monitoring of phenoxyacid herbicide adsorption on granular
activated carbon, Water Res., 31 (1997) 2356–2362.
- J.Y. Hu, T. Aizawa, Y. Ookubo, T. Morita, Y. Magara, Adsorptive
characteristics of ionogenic aromatic pesticides in water on
powdered activated carbon, Water Res., 32 (1998) 2593–2600.
- N.A. Fathy, A.A. Attia, B. Hegazi, Nanostructured activated
carbon xerogels for removal of methomyl pesticide, Desal.
Water Treat., 57 (2016) 9957–9970.
- R.P. Bansal, M. Goyal, Activated Carbon Adsorption, Taylor and
Francis Group, Boca Raton, FL, 2005.
- A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak,
Adsorption of phenolic compounds by activated carbon – a
critical review, Chemosphere, 58 (2005) 1049–1070.
- S. Biniak, A. Świątkowski, M. Pakuła, M. Sankowska,
K. Kuśmierek, G. Trykowski, Cyclic voltammetric and FTIR
studies of powdered carbon electrodes in the electrosorption of
4-chlorophenols from aqueous electrolytes, Carbon, 51 (2013)
301–312.
- K. Kuśmierek, M. Szala, A. Świątkowski, Adsorption of
2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from
aqueous solution on carbonaceous materials obtained by
combustion synthesis, J. Taiwan Inst. Chem. Eng., 63 (2016)
371–378.
- C. Moreno-Castilla, M.A. Ferro-García, J.P. Joly, I. Bautista-
Toledo, F. Carrasco-Marín, J. Rivera-Utrilla, Activated carbon
surface modifications by nitric acid, hydrogen peroxide, and
ammonium peroxydisulfate treatments, Langmuir, 11 (1995)
4386–4392.
- J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano,
P.M. Álvarez, M.C.M. Alvim-Ferraz, J.M. Dias, Activated carbon
modifications to enhance its water treatment applications.
An overview, J. Hazard. Mater., 187 (2011) 1–23.
- R. Berenguer, E. Morallón, Oxidation of different microporous
carbons by chemical and electrochemical methods, Front.
Mater., 6 (2019) 130.
- J. Przepiórski, Enhanced adsorption of phenol from water by
ammonia-treated activated carbon, J. Hazard. Mater., 135 (2006)
453–456.
- E. Lorenc-Grabowska, G. Gryglewicz, J. Machnikowski,
p-Chlorophenol adsorption on activated carbons with basic
surface properties, Appl. Surf. Sci., 256 (2010) 4480–4487.
- W. Chen, F.S. Cannon, J.R. Rangel-Mendez, Ammonia-tailoring
of GAC to enhance perchlorate removal. I: characterization of
NH3 thermally tailored GACs, Carbon, 43 (2005) 573–580.
- M. Moritz, M. Geszke-Moritz, Application of nanoporous
silicas as adsorbents for chlorinated aromatic compounds.
A comparative study, Mater. Sci. Eng. C, 41 (2014) 42–51.
- P. Patiparn, S. Takizawa, Effect of surface functional group on
adsorption of organic pollutants on hexagonal mesoporous
silicate, Water Sci. Tech. Water Suppl., 6 (2006) 17–25.
- S. Lagergren, Theorie der sogenannten adsorption geloester
stoffe, Vetenskapsakad. Handl., 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- K. Kuśmierek, The removal of chlorophenols from aqueous
solutions using activated carbon adsorption integrated with
H2O2 oxidation, React. Kinet. Mech. Catal., 119 (2016) 19–34.
- K. Kuśmierek, A. Świątkowski, K. Skrzypczyńska, S. Błażewicz,
J. Hryniewicz, The effects of the thermal treatment of activated
carbon on the phenols adsorption, Korean J. Chem. Eng., 34
(2017) 1081–1090.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
- H.M.F. Freundlich, Uber die adsorption in losungen, Z. Phys.
Chem., 57 (1906) 385–470 (in german).
- M. Sobiesiak, Chemical Structure of Phenols and Its
Consequence for Sorption Processes, M. Soto-Hernández,
Ed., Phenolic Compounds - Natural Sources, Importance and
Applications, IntechOpen, Rijeka, 2017, pp. 3–28.