References

  1. W.M. Moszczyński, A. Białek, T. Jakubas, J. Peć, Production of 4-chloro-2-methylphenoxyacetic acid in Organika-Sarzyna at Nowa Sarzyna. An example of the cooperation between an R&D institute and a chemical company, Przem. Chem., 89 (2010) 124–127 (in polish).
  2. WHO Document, MCPA in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality, WHO/SDE/WSH/03.04/38, Geneva, Switzerland, 1996.
  3. WHO document, Chlorophenoxy Herbicides (Excluding 2,4-D and MCPA) in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality, WHO/SDE/WSH/03.04/44, Geneva, Switzerland, 1996.
  4. K.Y. Foo, B.H. Hameed, Detoxification of pesticide waste via activated carbon adsorption process, J. Hazard. Mater., 175 (2010) 1–11.
  5. B. Doczekalska, K. Kuśmierek, A. Świątkowski, M. Bartkowiak, Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2- metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials, J. Environ. Sci. Health B, 53 (2018) 290–297.
  6. T.Y. Kim, S.S. Park, S.J. Kim, S.Y. Cho, Separation characteristics of some phenoxy herbicides from aqueous solution, Adsorption, 14 (2008) 611–619.
  7. A. Derylo-Marczewska, M. Blachnio, A.W. Marczewski, A. Swiatkowski, B. Tarasiuk, Adsorption of selected herbicides from aqueous solutions on activated carbon, J. Therm. Anal. Calorim., 101 (2010) 785–794.
  8. K. Kuśmierek, M. Sankowska, A. Świątkowski, Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon, Desal. Water Treat., 52 (2014) 178–183.
  9. W. Kaminski, K. Kusmierek, A. Swiatkowski, Sorption equilibrium prediction of competitive adsorption of herbicides 2,4-D and MCPA from aqueous solution on activated carbon using ANN, Adsorption, 20 (2014) 899–904.
  10. M.M. Abdeldaiem, J. Rivera-Utrilla, M. Sanchez-Polo, R. Ocampo-Perez, Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides, Sci. Total Environ., 537 (2015) 335–342.
  11. A. Spaltro, M. Pila, S. Simonetti, S. Álvarez-Torrellas, J.G. Rodríguez, D. Ruiz, A.D. Compañy, A. Juan, P. Allegretti, Adsorption and removal of phenoxy acetic herbicides from water by using commercial activated carbons: experimental and computational studies, J. Contam. Hydrol., 218 (2018) 84–93.
  12. O. Gimeno, P. Plucinski, S.T. Kolaczkowski, Removal of the herbicide MCPA by commercial activated carbons: equilibrium, kinetics, and reversibility, Ind. Eng. Chem. Res., 42 (2003) 1076–1086.
  13. A. Białek, K. Kuśmierek, A. Świątkowski, Adsorption and desorption of 2-cresol, 4-chloro-2-cresol and 2-methyl-4- chlorophenoxyacetic acid on activated carbons, Przem. Chem., 97 (2018) 1158–1162 (in polish).
  14. K. Ignatowicz-Owsieniuk, I. Skoczko, Dependence of sorption of phenoxyacetic herbicides on their physico-chemical properties, Pol. J. Environ. Stud., 11 (2002) 339–344.
  15. M. Yang, J. Hubble, A.D. Lockett, R.R. Rathbone, Thermal monitoring of phenoxyacid herbicide adsorption on granular activated carbon, Water Res., 31 (1997) 2356–2362.
  16. J.Y. Hu, T. Aizawa, Y. Ookubo, T. Morita, Y. Magara, Adsorptive characteristics of ionogenic aromatic pesticides in water on powdered activated carbon, Water Res., 32 (1998) 2593–2600.
  17. N.A. Fathy, A.A. Attia, B. Hegazi, Nanostructured activated carbon xerogels for removal of methomyl pesticide, Desal. Water Treat., 57 (2016) 9957–9970.
  18. R.P. Bansal, M. Goyal, Activated Carbon Adsorption, Taylor and Francis Group, Boca Raton, FL, 2005.
  19. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon – a critical review, Chemosphere, 58 (2005) 1049–1070.
  20. S. Biniak, A. Świątkowski, M. Pakuła, M. Sankowska, K. Kuśmierek, G. Trykowski, Cyclic voltammetric and FTIR studies of powdered carbon electrodes in the electrosorption of 4-chlorophenols from aqueous electrolytes, Carbon, 51 (2013) 301–312.
  21. K. Kuśmierek, M. Szala, A. Świątkowski, Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solution on carbonaceous materials obtained by combustion synthesis, J. Taiwan Inst. Chem. Eng., 63 (2016) 371–378.
  22. C. Moreno-Castilla, M.A. Ferro-García, J.P. Joly, I. Bautista- Toledo, F. Carrasco-Marín, J. Rivera-Utrilla, Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments, Langmuir, 11 (1995) 4386–4392.
  23. J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P.M. Álvarez, M.C.M. Alvim-Ferraz, J.M. Dias, Activated carbon modifications to enhance its water treatment applications. An overview, J. Hazard. Mater., 187 (2011) 1–23.
  24. R. Berenguer, E. Morallón, Oxidation of different microporous carbons by chemical and electrochemical methods, Front. Mater., 6 (2019) 130.
  25. J. Przepiórski, Enhanced adsorption of phenol from water by ammonia-treated activated carbon, J. Hazard. Mater., 135 (2006) 453–456.
  26. E. Lorenc-Grabowska, G. Gryglewicz, J. Machnikowski, p-Chlorophenol adsorption on activated carbons with basic surface properties, Appl. Surf. Sci., 256 (2010) 4480–4487.
  27. W. Chen, F.S. Cannon, J.R. Rangel-Mendez, Ammonia-tailoring of GAC to enhance perchlorate removal. I: characterization of NH3 thermally tailored GACs, Carbon, 43 (2005) 573–580.
  28. M. Moritz, M. Geszke-Moritz, Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study, Mater. Sci. Eng. C, 41 (2014) 42–51.
  29. P. Patiparn, S. Takizawa, Effect of surface functional group on adsorption of organic pollutants on hexagonal mesoporous silicate, Water Sci. Tech. Water Suppl., 6 (2006) 17–25.
  30. S. Lagergren, Theorie der sogenannten adsorption geloester stoffe, Vetenskapsakad. Handl., 24 (1898) 1–39.
  31. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  32. K. Kuśmierek, The removal of chlorophenols from aqueous solutions using activated carbon adsorption integrated with H2O2 oxidation, React. Kinet. Mech. Catal., 119 (2016) 19–34.
  33. K. Kuśmierek, A. Świątkowski, K. Skrzypczyńska, S. Błażewicz, J. Hryniewicz, The effects of the thermal treatment of activated carbon on the phenols adsorption, Korean J. Chem. Eng., 34 (2017) 1081–1090.
  34. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  35. H.M.F. Freundlich, Uber die adsorption in losungen, Z. Phys. Chem., 57 (1906) 385–470 (in german).
  36. M. Sobiesiak, Chemical Structure of Phenols and Its Consequence for Sorption Processes, M. Soto-Hernández, Ed., Phenolic Compounds - Natural Sources, Importance and Applications, IntechOpen, Rijeka, 2017, pp. 3–28.