References

  1. L. Madhura, S. Kanchi, M.I. Sabela, S. Singh, K. Bisetty, Inamuddin, Membrane technology for water purification, Environ. Chem. Lett., 16 (2018) 343–365.
  2. M. Bodzek, Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Arch. Environ. Prot., 45 (2019) 4–19.
  3. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  4. S. Miller, H. Shemer, R. Semiat, Energy and environmental issues in desalination, Desalination, 366 (2014) 2–8.
  5. X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931–3946.
  6. D. Cohen-Tanugi, R.K. McGovern, S.H. Dave, J.H. Lienhard, J.C. Grossman, Quantifying the potential of ultra-permeable membranes for water desalination, Energy Environ. Sci., 7 (2014) 1134–1141.
  7. Z. Altintas, I. Chianella, G. Da Ponte, S. Paulussen, S. Gaeta, I.E. Tothill, Development of functionalized nanostructured polymeric membranes for water purification, Chem. Eng. J., 300 (2016) 358–366.
  8. J.R. Werber, C.O. Osuji, M. Elimelech, Materials for nextgeneration desalination and water purification membranes, Nat. Rev. Mater., 1 (2016) 16018.
  9. N. Songa, X. Gao, Z. Mac, X. Wanga, Y. Weia, C. Gao, A review of graphene-based separation membrane: materials, characteristics, preparation and applications, Desalination, 437 (2018) 59–72.
  10. A. Anand, B. Unnikrishnan, J.-Y. Mao, H.-J. Lin, C.-C. Huang, Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling – a review, Desalination, 429 (2018) 119–133.
  11. Y.-X. Shen, P.O Saboe, I.T. Sines, M. Erbakan, M. Kumar, Biomimetic membranes: a review, J. Membr. Sci., 454 (2014) 359–381.
  12. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes, Science, 303 (2004) 62–65.
  13. Y. Manawi, V. Kochkodan, M. Ali Hussein, M.A. Khaleel, M. Khraisheh, N. Hilal, Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination?, Desalination, 391 (2016) 69–88.
  14. P.S. Goh, A.F. Ismail, N. Hilal, Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination?, Desalination, 380 (2016) 100–104.
  15. R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83 (1993) 81–150.
  16. C. Feng, X. Ju, M. Li, T. Yang, C. Gao, Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate, J. Membr. Sci., 451 (2014) 103–110.
  17. J.T. Arena, B. McCloskey, B.D. Freeman, J.R. McCutcheon, Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis, J. Membr. Sci., 375 (2011) 55–62.
  18. A. Matin, Z. Khan, S.M.J. Zaidi, M.C. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention, Desalination, 281 (2011) 1–16.
  19. K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membranę materials for desalination—development to date and future potential, J. Membr. Sci., 370 (2011) 1–22.
  20. L.-X. Dong, X.-C. Huang, Z. Wang, Z. Yang, X.-M. Wang, C.Y. Tang, A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles, Sep. Purif. Technol., 166 (2016) 230–239.
  21. A. Mollahosseini, A. Rahimpour, Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate, J. Ind. Eng. Chem., 20 (2014) 1261–1268.
  22. A.S. AL-Hobaib, J.E. Ghoul, L.E. Mir, Fabrication of polyamide membrane reached by MgTiO3 nanoparticles for ground water purification, Desal. Wat. Treat., 57 (2016) 8639–8648.
  23. G.L. Jadav, P.S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, J. Membr. Sci., 328 (2009) 257–267.
  24. P.F. Andrade, A.F. de Faria, S.R. Oliveira, M.A.Z. Arruda, M.D.C. Gonçalves, Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles, Water Res., 81 (2015) 333–342.
  25. Y. Lv, H.-C. Yang, H.-Q. Liang, L.-S. Wan, Z.-K. Xu, Novel nanofiltration membrane with ultrathin zirconia film as selective layer, J. Membr. Sci., 500 (2016) 265–271.
  26. M.L. Lind, A.K. Ghosh, A. Jawor, X.F. Huang, W. Hou, Y. Yang, E.M.V. Hoek, Influence of zeolite crystal size on zeolitepolyamide thin film nanocomposite membranes, Langmuir, 25 (2009) 10139–10145.
  27. F. Dorosti, M.R. Omidkhah, M.Z. Pedram, F. Moghadam, Fabrication and characterization of polysulfone/polyimide–zeolite mixed matrix membrane for gas separation, Chem. Eng. J., 171 (2011) 1469–1476.
  28. M.R.S. Kebria, M. Jahanshahi, A. Rahimpour, SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions, Desalination, 367 (2015) 255–264.
  29. J. Yin, E.-S. Kim, J. Yang, B. Deng, Fabrication of a novel thinfilm nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification, J. Membr. Sci., 423 (2012) 238–246.
  30. S. Yu, X. Zuo, R. Bao, X. Xu, J. Wang, J. Xu, Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane, Polymer, 50 (2009) 553–559.
  31. J. Ahn, W.-J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, J. Membr. Sci., 314 (2008) 123–133.
  32. M. Sadeghi, M.A. Semsarzadeh, H. Moadel, Enhancement of the gas separation properties of polybenzimidazole (PBI) membranę by incorporation of silica nano particles, J. Membr. Sci., 331 (2009) 21–30.
  33. H. Zhang, H. Mao, J. Wang, R. Ding, Z. Du, J. Liu, S. Cao, Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration, J. Membr. Sci., 470 (2014) 70–79.
  34. S.N. Hoseini, A.K. Pirzaman, M.A. Aroon, A.E. Pirbazari, Photocatalytic degradation of 2, 4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes, J. Water Process Eng., 17 (2017) 124–134.
  35. A. Kowalik-Klimczak, E. Stanisławek, J. Kacprzyńska-Gołacka, A. Bednarska, E. Osuch-Słomka, J. Skowroński, The polyamide membranes functionalized by nanoparticles for biofouling control, Desal. Wat. Treat., 128 (2018) 243–252.
  36. M.R. Esfahani, T.J. Lyler, H.A. Stretz, M.J.M. Wells, Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification, Desalination, 372 (2015) 47–56.
  37. K. Szymański, P. Sienkiewicz, D. Darowna, M. Jose, K. Szymańska, S. Mozia, Investigation on polyethersulfone membranes modified with Fe3O4 – trisodium citrate nanoparticles, Desal. Wat. Treat., 128 (2018) 265–271.
  38. H. Rabiee, V. Vatanpour, M.H.D.A. Farahani, H. Zarrabi, Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles, Sep. Purif. Technol., 156 (2015) 299–310.
  39. H. Li, W. Shi, H. Zhu, Y. Zhang, Q. Du, X. Qin, Effects of zinc oxide nanospheres on the separation performance of hollow fiber poly(piperazine-amide) composite nanofiltration membranes, Fibers Polym., 17 (2016) 836–846.
  40. L.-H. Li, J.-C. Deng, H.-R. Deng, Z.-L. Liu, L. Xin, Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes, Carbohydr. Res., 345 (2010) 994–998.
  41. L. Yan, Y.-S. Li, C.B. Xiang, S. Xianda, Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance, J. Membr. Sci., 276 (2006) 162–167.
  42. N. Maximous, G. Nakhla, W. Wan, K. Wong, Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, J. Membr. Sci., 341 (2009) 67–75.
  43. P. Maheswari, D. Prasannadevi, D. Mohan, Preparation and performance of silver nanoparticle incorporated polyetherethersulfone nanofiltration membranes, High Perform. Polym., 25 (2012) 174–187.
  44. C. Zhang, Z. Hu, B. Deng, Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms, Water Res., 88 (2016) 403–427.
  45. M. Ben-Sasson, X. Lu, E. Bar-Zeev, K.R. Zodrow, S. Nejati, G. Qi, E.P. Giannelis, M. Elimelech, In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation, Water Res., 62 (2014) 260–270.
  46. H.-L. Yang, J. Chun-Te Lin, C. Huang, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination, Water Res., 43 (2009) 3777 – 3786.
  47. K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P.J.J. Alvarez, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water Res., 43 (2009) 715–723.
  48. A. Mollahosseini, A. Rahimpour, M. Jahamshahi, M. Peyravi, M. Khavarpour, The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane, Desalination, 306 (2012) 41–50.
  49. S. Mozia, M. Jose, P. Sienkiewicz, K. Szymański, D. Darowna, M. Zgrzebnicki, A. Markowska-Szczupak, Polyethersulfone ultrafiltration membranes modified with hybrid Ag/titanate nanotubes: physicochemical characteristics, antimicrobial properties and fouling resistance, Desal. Wat. Treat., 128 (2018) 106–118.
  50. A.M. Ferreira, É.B. Roque, F.V.D. Fonseca, C.P. Borges, High flux microfiltration membranes with silver nanoparticles for water disinfection, Desal. Wat. Treat., 56 (2015) 3590–3598.
  51. N.C. Mueller, B. van der Bruggen, V. Keuter, P. Luis, T. Melin, W. Pronk, W. Reisewitz, D. Rickerby, G.M. Rios, W. Wennekes, B. Nowack, Nanofiltration and nanostructured membranes— should they be considered nanotechnology or not?, J. Hazard. Mater., 211–212 (2012) 275–280.
  52. V. Srivastava, D. Gusain, Y.C. Sharma, Critical review on the toxicity of some widely used engineered nanoparticles, Ind. Eng. Chem. Res., 54 (2015) 6209–6233.
  53. C. Dong, G. He, H. Li, R. Zhao, Y. Han, Y. Deng, Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles, J. Membr. Sci., 387– 388 (2012) 40–47.
  54. A.K. Nair, A.M. Isloor, R. Kumar, A.F. Ismail, Antifouling and performance enhancement of polysulfone ultrafiltration membranes using CaCO3 nanoparticles, Desalination, 322 (2013) 69–75.
  55. R.J. Gohari, E. Halakoo, W.J. Lau, M.A. Kassim, T. Matsuura, A.F. Ismail, Novel polyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved antifouling properties for oily wastewater treatment process, RSC Adv., 4 (2014) 17587–17596.
  56. R. Das, M.E. Ali, S.B. Abd Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination, 336 (2014) 97–109.
  57. P.S. Goh, A.F. Ismail, B.C. Ng, Carbon nanotubes for desalination: performance evaluation and current hurdles, Desalination, 308 (2013) 2–14.
  58. R. Das, S.B. Abd Hamid, M.E. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna, Multifunctional carbon nanotubes in water treatment: the present, past and future, Desalination, 354 (2014) 160–179.
  59. M. Tian, Y.N. Wang, R. Wang, Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes, Desalination, 370 (2015) 79–86.
  60. P.S. Goh, A.F. Ismail, Graphene-based nanomaterial: the stateof- the-art material for cutting edge desalination technology, Desalination, 356 (2015) 115–128.
  61. I. Akin, E. Zor, H. Bingol, M. Ersoz, Green synthesis of reduced graphene oxide/ polyaniline composite and its application for salt rejection by polysulfonebased composite membranes, J. Phys. Chem. B, 118 (2014) 5707–5716.
  62. S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol., 10 (2015) 459–464.
  63. D. Cohen-Tanugi, J.C. Grossman, Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation, Desalination, 366 (2015) 59–70.
  64. J. Wang, P. Zhang, B. Liang, Y. Liu, T. Xu, L. Wang, B. Cao, K. Pan, Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment, ACS Appl. Mater. Interfaces, 8 (2016) 6211–6218.
  65. M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol., 47 (2013) 3715–3723.
  66. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for next generation semipermeable membranes, Crit. Rev. Environ. Sci. Technol., (2019), DOI:10.1080/10643389.2 019.1664258.
  67. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312 (2006) 1034–1037.
  68. J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol., 12 (2017) 546–545.
  69. A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Mat. Sci., 1 (2019) 31–47.
  70. Y. You, V. Sahajwalla, M. Yoshimura, R.K. Joshi, Graphene and graphene oxide for desalination, Nano, 8 (2016) 117–119.
  71. S. Homaeigohar, M. Elbahri, Graphene membranes for water desalination, NPG Asia Mater., 9 (2017) e427.
  72. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558–1565.
  73. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282–286.
  74. M. Hu, B. Mi, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction, J. Membr. Sci., 469 (2014) 80–87.
  75. X. Wang, Z. Xiong, Z. Liu, T. Zhang, Exfoliation at the liquid/air Interface to assembler reduced graphene oxide ultrathin films for a flexible noncontact sensing device, Adv. Mater., 27 (2015) 1370–1375.
  76. X. Chen, G. Liu, H. Zhang, Y. Fan, Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol, Chin. J. Chem. Eng., 23 (2015) 1102–1109.
  77. G. Decher, M. Eckle, J. Schmitt, B. Strut, Layer-by-layer assembled multicomposite films, Curr. Opin. Colloid Interface Sci., 3 (1998) 32–39.
  78. H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen, separation, Science, 342 (2013) 95–98.
  79. R. Nair, H. Wu, P. Jayaram, I. Grigorieva, A. Geim, Unimpeded permeation of water through helium-leak–tight graphenebased membranes, Science, 335 (2012) 442–444.
  80. M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater., 19 (2007) 4396–4404.
  81. H. Boehm, A. Clauss, G. Fischer, U. Hoffman, The adsorption behavior of very thin carbon films, Z. Anorg. Allg. Chem., 316 (1962) 119–127.
  82. W.L. Xu, C. Fang, F. Zhou, Z. Song, Q. Liu, R. Qiao, M. Yu, Selfassembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification, Nano Lett., 17 (2017) 2928–2933.
  83. C. Yu, B. Zhang, F. Yana, J. Zhao, J. Li, L. Li, J. Li, Engineering nano-porous graphene oxide by hydroxyl radicals, Carbon, 105 (2016) 291–296.
  84. B. Mi, Graphene oxide membranes for ionic and molecular sieving, Science, 343 (2014) 740–742.
  85. Y. Yuan, X. Gao, Y. Wei, X. Wang, J. Wang, Y. Zhang, C. Gao, Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes, Desalination, 405 (2017) 29–39.
  86. A. Nicolaï, B.G. Sumpter, V. Meunier, Tunable water desalination across Graphene oxide framework membranes, Phys. Chem. Chem. Phys., 16 (2014) 8646–8654.
  87. D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett., 12 (2012) 3602–3608.
  88. Y. Han, Z. Xu, C. Gao, Ultrathin Graphene Nanofiltration Membrane for Water Purification, Adv. Funct. Mater., 23 (2013) 3693–3700.
  89. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 343 (2014) 752–754.
  90. C. Xu, A. Cui, Y. Xu, X. Fu, Grapheneoxide–TiO2 composite filtration membranes and their potential application for water purification, Carbon, 62 (2013) 465–471.
  91. K. Sears, L. Dumée, J. Schütz, M. She, C. Huynh, S. Hawkins, M. Duke, S. Gray, Recent developments in carbon nanotube membranes for water purification and gas separation, Materials, 3 (2010) 127.
  92. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414 (2001) 188–190.
  93. J.A. Thomas, A.J.H. McGaughey, Water flow in carbon nanotubes: transition to subcontinuum transport, Phys. Rev. Lett., 102 (2009) 184502.
  94. Y. Chan, J.M. Hill, Ion selectivity using membranes comprising functionalized carbon nanotubes, J. Math. Chem., 51 (2013) 1258–1273.
  95. X. Peng, J. Jin, E.M. Ericsson, I. Ichinose, General method for ultrathin free-standing films of nanofibrous composite materials, J. Am. Chem. Soc., 129 (2007) 8625–8633.
  96. L. Zhang, G.-Z. Shi, S. Qiu, L.-H. Cheng, H.-L. Chen, Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes, Desal. Wat. Treat., 34 (2011) 19–24.
  97. S. Kar, R.C. Bindal, P.K. Tewari, Carbon nanotube membranes for desalination and water purification: challenges and opportunities, Nano Today, 7 (2012) 385–389.
  98. L.F. Dumée, K. Sears, J. Schütz, N. Finn, C. Huynh, S. Hawkins, M. Duke, S. Gray, Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation, J. Membr. Sci., 351 (2010) 36–43.
  99. M. Bhadra, S. Roy, S. Mitra, Enhanced desalination using carboxylated carbon nanotube immobilized membranes, Sep. Purif. Technol., 120 (2013) 373–377.
  100. J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification, Desalination, 379 (2016) 93–101.
  101. S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates, J. Membr. Sci., 453 (2014) 292–301.
  102. B. Fryczkowska, M. Sieradzka, E. Sarna, R. Fryczkowski, J. Janicki, Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes, J. Appl. Polym. Sci., 132 (2015) 1–18.
  103. J. Xu, L. Zhang, X. Gao, H. Bie, Y. Fu, C. Gao, Constructing antimicrobial membrane surfaces with polycation–copper(II) complex assembly for efficient seawater softening treatment, J. Membr. Sci., 491 (2015) 28–36.
  104. Z. Yang, X.H. Ma, C.Y. Tang, Recent development of novel membranes for desalination, Desalination, 434 (2018) 37–59.
  105. F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets, Environ. Sci. Technol. Lett., 1 (2014) 71–76.
  106. W. Choi, J. Choi, J. Bang, J.H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, ACS Appl. Mater. Interfaces, 5 (2013) 12510–12519.
  107. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 5 (2011) 6971–6980.
  108. K. Xu, B. Feng, C. Zhou, A. Huang, Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination, Chem. Eng. Sci., 146 (2016) 159–165.
  109. S.G. Kim, D.H. Hyeon, J.H. Chun, B.H. Chun, S.H. Kim, Novel thin nanocomposite RO membranes for chlorine resistance, Desal. Wat. Treat., 51 (2013) 6338–6345.
  110. V. Kochkodan, D.J. Johnson, N. Hilal, Polymeric membranes: surface modification for minimizing (bio)colloidal fouling, Adv. Colloid Interface Sci., 206 (2014) 116–140.
  111. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385–388.
  112. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Adv. Funct. Mater., 19 (2009) 2297–2302.
  113. Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli, Z. Liu, Q. Huang, C. Fan, H. Fang, R. Zhou, Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets, Nat. Nanotechnol., 8 (2013) 594–601.
  114. X.F. Sun, J. Qin, P.F. Xia, B.B. Guo, C.M. Yang, C. Song, S.G. Wang, Graphene oxide–silver nanoparticle membrane for biofouling control and water purification, Chem. Eng. J., 281 (2015) 53–59.
  115. W. Ma, A. Soroush, T. Van Anh Luong, S. Rahaman, Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance, J. Colloid Interface Sci., 501 (2017) 330–340.
  116. J. Zhang, Z. Xu, M. Shan, B. Zhou, Y. Li, B. Li, J. Niu, X. Qian, Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 448 (2013) 81–92.
  117. S.-M. Xue, Z.-L. Xu, Y.-J. Tang, C.-H. Ji, Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs), ACS Appl. Mater. Interfaces, 8 (2016) 19135–19144.
  118. W.-F. Chan, E. Marand, S.M. Martin, Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance, J. Membr. Sci., 509 (2016) 125–137.
  119. O.-K. Park, N.H. Kim, K.-t. Lau, J.H. Lee, Effect of surface treatment with potassium persulfate on dispersion stability of multi-walled carbon nanotubes, Mater. Lett., 64 (2010) 718–721.
  120. K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes, Small, 1 (2005) 180–192.
  121. J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci., 479 (2015) 256–275.
  122. W.-F. Chan, H.-y. Chen, A. Surapathi, M.G. Taylor, X. Shao, E. Marand, J.K. Johnson, Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS Nano, 7 (2013) 5308–5319.
  123. M. Amini, M. Jahanshahi, A. Rahimpour, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes, J. Membr. Sci., 435 (2013) 233–241.
  124. A. Tiraferri, C.D. Vecitis, M. Elimelech, Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties, ACS Appl. Mater. Interfaces, 3 (2011) 2869–2877.
  125. B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination, 313 (2013) 199–207.
  126. C. Zhao, X. Xu, J. Chen, F. Yang, Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes, J. Environ. Chem. Eng., 1 (2013) 349–354.
  127. N.F.D. Aba, J.Y. Chong, B. Wang, C. Mattevi, K. Li, Graphene oxide membranes on ceramic hollow fibers – Microstructural stability and nanofiltration performance, J. Membr. Sci., 484 (2015) 87–94.
  128. Y.T. Chung, E. Mahmoudi, A.W. Mohammad, A. Benamor, D. Johnson, N. Hilal, Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control, Desalination, 402 (2017) 123–132.
  129. J. Lee, H.R. Chae, Y.J. Won, K. Lee, C.H. Lee, H.H. Lee, I.C. Kim, J.M. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment, J. Membr. Sci., 448 (2013) 223–230.
  130. L. Yu, Y. Zhang, B. Zhang, J. Liu, H. Zhang, C. Song, Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties, J. Membr. Sci., 447 (2013) 452–462.
  131. Z. Xu, J. Zhang, M. Shan, Y. Li, B. Li, J. Niu, B. Zhou, X. Qian, Organosilane functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 458 (2014) 1–13.
  132. H. Zhao, L. Wu, Z. Zhou, L. Zhang, H. Chen, Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated Graphene oxide, Phys. Chem. Chem. Phys., 15 (2013) 9084–9092.
  133. J. Yin, G. Zhu, B. Deng, Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment, J. Membr. Sci., 437 (2013) 237–248.
  134. F. Liu, M.R.M. Abed, K. Li, Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3, J. Membr. Sci., 366 (2011) 97–103.
  135. A.M. Dimiev, L.B. Alemany, J.M. Tour, Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model, ACS Nano, 7 (2013) 576–588.
  136. N. Pezeshk, D. Rana, R.M. Narbaitz, T. Matsuura, Novel modified PVDF ultrafiltration flat-sheet membranes, J. Membr. Sci., 389 (2012) 280–286.
  137. G.S. Lai, W.J. Lau, P.S. Goh, A.F. Ismail, N. Yusof, Y.H. Tan, Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance, Desalination, 387 (2016) 14–24.
  138. B. Fryczkowska, The application of ultrafiltration composite GO/PAN membranes for removing dyes from textile wastewater, Desal. Wat. Treat., 128 (2018) 79–88.
  139. V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes, Sep. Purif. Technol., 90 (2012) 69–82.
  140. M.G. Kochameshki, A. Marjani, M. Mahmoudian, K. Farhadi, Grafting of diallyldimethylammonium chloride on graphene oxide by RAFT polymerization for modification of nanocomposite polysulfone membranes using in water treatment, Chem. Eng. J., 309 (2017) 206–221.
  141. J Li, X. Liu, J. Lu, Y. Wang, G. Li, F. Zhao, Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles, J. Colloid Interface Sci., 484 (2016) 107–115.
  142. E. Mahmoudi, L.Y. Ng, M.M. Ba-Abbad, A.W. Mohammad, Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates, Chem. Eng. J., 277 (2015) 1–10.
  143. Q. Wu, G.E. Chen, W.G. Sun, Z.L. Xu, Y.P. Konga, X.P. Zheng, S.J. Xu. Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance, Chem. Eng. J., 313 (2017) 450–460.
  144. P.A.K. Reddy, P.V.L. Reddy, E. Kwon, K.H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
  145. A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault, H. Kochkar, Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms and formal mechanisms, Appl. Catal., B, 163 (2015) 404–414.
  146. F. Petronella, A. Truppi, C. Ingrosso, T. Placido, M. Striccoli, M.L. Curri, A. Agostiano, R. Comparelli, Nanocomposite materials for photocatalytic degradation of pollutants, Catal. Today, 281 (2016) 85–100.
  147. H. Choi, E. Stathatos, D.D. Dionysiou, Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications, Appl. Catal., B, 63 (2006) 60–67.
  148. L.F. Wu, S.M.C. Ritchie, Enhanced dechlorination of trichloroethylene by membrane-supported Pd-coated iron nanoparticles, Environ. Progress, 27 (2008) 218–224.
  149. H.Z. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, J. Phys. Chem. B, 104 (2000) 3481–3487.
  150. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev., 11 (2007) 401–425.
  151. H. Kominami, K. Yabutani, T. Yamamoto, Y. Kara, B. Ohtani, Synthesis of highly active tungsten(VI) oxide photocatalysts for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions, J. Mater. Chem., 11 (2001) 3222–3227.
  152. J. Kim, C.W. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light, Environ. Sci. Technol., 44 (2010) 6849–6854.
  153. J. Huang, X. Xu, C. Gu, W. Wang, Size-controlled synthesis of porous ZnSnO3 cubes and their gas-sensing and photocatalysis properties, Sens. Actuators B Chem., 171–172 (2012) 572–579.
  154. M.A. Rahman, M. Mohd, Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide, Desalination, 181(2005) 161–172.
  155. E.R. Bandala, S. Gelover, T. Leal, C. Arancibia, A. Jiménez, C. Estrada, Solar photocatalytic degradation of Aldrin, Catal. Today, 76 (2002) 189–199.
  156. E. Evgenidou, J. Poulios, F. Fytianos, Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts, Appl. Catal., B, 59 (2005) 81–89.
  157. I. Oller, W. Gernjak, M.I. Maldonado, L.A. Pérez-Estrada, S. Malato, Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale, J. Hazard. Mater., 138 (2006) 507–517.
  158. A.G. Rincon, C. Pulgarin, Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: postirradiation events in the dark and assessment of the effective disinfection time, Appl. Catal., B, 49 (2004) 99–112.
  159. J. Lonnen, S. Kilvington, S.C. Kehoe, F. Al-Touati, K.G. McGuigan, Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water, Water Res., 39 (2005) 877–883.
  160. J.A. Ibanez, M.I. Litter, R.A. Pizarro, Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: comparative study with other Gram (-) bacteria, J. Photochem. Photobiol. A Chem., 157 (2003) 81–85.
  161. M. Bodzek, K. Konieczny, A. Kwiecińska-Mydlak, The application of nanomaterial adsorbents for the removal of impurities from water and wastewaters: a review, Desal. Wat. Treat., (2020).
  162. M. Bodzek, K. Konieczny, M. Rajca, Membranes in water and wastewater disinfection– review, Arch. Environ. Prot., 45 (2019) 3–18.
  163. Y. Zhang, B. Wu, H. Liu, M. Wang, Y. He, B. Pan, Nanomaterialsenabled water and wastewater treatment, Nanolmpact, 3–4 (2016) 22–39.
  164. M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27 (2009) 76–83.
  165. A.A. Hebeish, M.M. Abdelhady, A.M. Youssef, TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile, Carbohydr. Polym., 91 (2013) 549–559.
  166. Q.L. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42 (2008) 4591–4602.
  167. G.S. Martynkova, M. Valaskova, Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays, J. Nanosci. Nanotechnol., 14 (2014) 673–693.
  168. Z.M. Xiu, J. Ma, P.J.J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions, Environ. Sci. Technol., 45 (2011) 9003–9008.
  169. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., 52 (2000) 662–668.
  170. C.D. Vecitis, K.R. Zodrow, S. Kang, M. Elimelech, Electronicstructure- dependent bacterial cytotoxicity of single-walled carbon nanotubes, ACS Nano, 4 (2010) 5471–5479.
  171. J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, R. Peng, Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms, ACS Appl. Mater. Interfaces, 5 (2013) 3867–3874.
  172. S. Kang, M.S. Mauter, M. Elimelech, Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity, Environ. Sci. Technol., 42 (2008) 7528–7534.
  173. B. De Gusseme, T. Hennebel, E. Christiaens, H. Saveyn, K. Verbeken, J.P. Fitts, N. Boon, W. Verstraete, Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes, Water Res., 45 (2011) 1856–1864.
  174. F. Ahmed, C.M. Santos, R. Vergara, M.C.R. Tria, R. Advincula, D.F. Rodrigues, Antimicrobial applications of electroactive PVK-SWNT nanocomposites, Environ. Sci. Technol., 46 (2012) 1804–1810.
  175. A.S. Brady-Estevez, M.H. Schnoor, S. Kang, M. Elimelech, SWNT-MWNT hybrid filter attains high viral removal and bacterial inactivation, Langmuir, 26 (2010) 19153–19158.
  176. M. Peter-Varbanets, C. Zurbrugg, C. Swartz, W. Pronk, Decentralized systems for potable water and the potential of membrane technology, Water Res., 43 (2009) 245–265.