References

  1. S.A. Alrumman, A.F. El-kott, S.M.A.S. Keshk, Water pollution: source and treatment, Am. J. Environ. Eng., 6 (2016) 88–98.
  2. M.A. Arefin, A. Mallik, Sources and causes of water pollution in Bangladesh: a technical overview, Bibechana, 15 (2018) 97–112.
  3. G.M. Al-Senani, F.F. Al-Fawzan, Study on adsorption of Cu and Ba from aqueous solutions using nanoparticles of origanum (OR) and lavandula (LV), Bioinorg. Chem. Appl., 2018 (2018) 1–8.
  4. A. Emamverdian, Y. Ding, F. Mokhberdoran, Y. Xie, Heavy metal stress and some mechanisms of plant defense response. Sci. World J., 2015 (2015) 1–18.
  5. N. Arif, V. Yadav, S. Singh, S. Singh, P. Ahmad, R.K. Mishra, S. Sharma, D.K. Tripathi, D.K. Dubey, D.K. Chauhan, Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development, Front. Environ. Sci., 4 (2016) 1–11.
  6. C.H. Lin, Y.T. Hsu, C.C. Yen, H.H. Chen, C.J. Tseng, Y.K. Lo, J.Y.H. Chan, Association between heavy metal levels and acute ischemic stroke, J. Biomed. Sci., 25 (2018) 1–8.
  7. W. Wani, K.Z. Masoodi, A. Zaid, S.H. Wani, F. Shah, V.S. Meena, S.A. Wazi, K.A. Mosa, Engineering plants for heavy metal stress tolerance, Rendiconti Lincei. Scienze Fisiche e Naturali., 29 (2018) 709–723.
  8. R.K. Gautam, S.K. Sharma, S. Mahiya, M.C. Chattopadhyaya, Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation, Heavy Met. Water, 2018, 1–24. doi:10.1039/9781782620174–00001.
  9. F.L. Furlan, N.C. Filho, M.F.B. Consolin, M.S. Gonçalves, P. Valderrama, A.K. Genena, Use of agricultural and agroindustrial residues as alternative adsorbents of manganese and iron in aqueous solution, Rev. Amb. Água., 13 (2018) 1–12.
  10. D. Schwantes, A.C. Gonçalves Jr., M.A. Campagnolo, C.R.T. Tarley, D.C. Dragunski, A. de Varennes, A.K.S. Santos, E. Conradi, Chemical modifications on pinus bark for adsorption of toxic metals, J. Environ. Chem. Eng., 6 (2018) 10–22.
  11. D. Schwantes, A.C. Gonçalves Jr., L. Strey, V. Schwantes, H. Nacke, Reuse and Recycling Techniques: kinetics, Equilibrium and Thermodynamics of the Adsorption Process of Lead Using Cassava Industry Wastes, In: HELENA BÁRTOLO, José Pinto Duarte (Org.), Green Design, Materials and Manufacturing Processes, 1 ed., CRC Press Taylor & Francis Group, Boca Raton, Vol. 2013, 2013, pp. 417–422.
  12. H. Nacke, A.C. Gonçalves Jr., G.F. Coelho, L. Strey, A. Laufer, Removal of cadmium from aqueous solutions by adsorption on Jatropha biomass, 1 (2013) 367–372. In: HELENA BÁRTOLO, José Pinto Duarte. (Org.). Green Design, Materials and Manufacturing Processes, 1st ed., CRC Press Taylor & Francis Group, Boca Raton, 2013 (2013) 367–372.
  13. A.C. Gonçalves Jr., D. Schwantes, M.A. Campagnolo, D.C. Dragunski, C.R. Tarley, A.K.S. Silva, Removal of toxic metals using endocarp of açaí berry as biosorbent, Water Sci. Technol., 77 (2018) doi: 10.2166/wst.2018.032.
  14. D. Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal, V.K. Gupta, The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies, Colloid Interface Sci. Commun., 7 (2015) 16–19.
  15. M. Feizi, M. Jalali, Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues, J. Taiwan Inst. Chem. Eng., 55 (2015) 125–136.
  16. D. Balarak, F.K. Mostafapour, Adsorption behavior of Acid Red 97 Dye on Canola Stalks, J. Sci. Eng. Res., 3 (2016) 148–154.
  17. C.R. Girish, V.R. Murty, Mass transfer studies on adsorption of phenol from wastewater using Lantana camara, Forest Waste, Int. J. Chem. Eng., 2016 (2016) 1–11.
  18. N.C. Corda, M.S. Kini, A review on adsorption of cationic dyes using activated carbon, MATEC Web Conf., 144 (2018) 2–22.
  19. J. Zhou, A. Luo, Y. Zhao, Preparation and characterisation of activated carbon from waste tea by physical activation using steam. J. Air Waste Manage. Assoc., 68 (2018) 1269–1277.
  20. D. Bergna, T. Varila, H. Romar, U. Lassi, Comparison of the properties of activated carbons produced in one-stage and twostage processes, J. Carbon Res., 4 (2018) 41–50.
  21. M.A. Razi, A. Al-Gheethi, M. Al-Qaini, A. Yousef, Efficiency of activated carbon from palm kernel shell for treatment of greywater, Arab J. Basic Appl. Sci., 25 (2018) 103–110.
  22. M. Kuroda, K. Hara, M. Takekawa, M. Uwasu, M. Ike, Historical trends of academic research on the water environment in Japan: evidence from the Academic Literature in the Past 50 Years, Water, 10 (2018) 1–15.
  23. A.E. Duncan, N. De Vries, K.B. Nyarko, Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries, Water Air Soil Pollut., 229 (2018) 1–10.
  24. W.L. Copa, Geological classification for the rocks of weathering, Petrol. Sci. Eng., 2 (2018) 1–6.
  25. S. Blackmore, B. Vriens, M. Sorensen, I.M. Power, L. Smith, S.J. Hallan, K.U. Mayer, R.D. Beckie, Microbial and geochemical controls on waste rock weathering and drainage quality, Sci. Total Environ., 640 (2018) 1004–1014.
  26. P. Hunter, Essentially deadly: living with toxic elements: Humans and plants have evolved various mechanisms to deal with and even adopt toxic heavy metals, EMBO Rep., 16 (2015) 1605–1608.
  27. M.M. Onakpa, A.A. Njan, O.C. Kalu, A review of heavy metal contamination of food crops in Nigeria, Glob. Health, 84 (2018) 488–494.
  28. Y.A. Naggar, M.S. Khali, A.M. Ghorab, Environmental pollution by heavy metals in the aquatic ecosystems of Egypt, Open Acc. J. Toxicol., 3 (2018) 555–603.
  29. G.Y. Sara, A. Emmanuel, I. Joseph, J.E. Eneche, M.S. Galo, Determination of the level of heavy metals in some selected vegetables from an irrigated farmland of Kudenda in Kaduna Metropolis, Nigeria, Asian J. Environ. Ecol., 7 (2018) 1–8.
  30. A.C. Gonçalves Jr, E.B. Luchese, E. Lenzi, Avaliação da fitodisponibilidade de cádmio, chumbo e cromo, em soja cultivada em Latossolo Vermelho Escuro tratado com fertilizantes comerciais, Quim. Nova, 3 (2000) 173–177.
  31. R.A. Bernhoft, Cadmium Toxicity and Treatment, Sci. World J., 3 (2013) 1–7.
  32. S. Satarug, Dietary cadmium intake and its effects on kidneys, Toxics, 6 (2018) 1–15.
  33. H.R. Marini, D. Puzzolo, A. Micali, E.B. Adamo, N. Irrera, A. Pisani, G. Pallio, V. Trichilo, C. Malta, A. Bitto, S. Squadrito, D., Altavilla, L. Minutoli, Neuroprotective effects of polydeoxyribonucleotide in a murine model of cadmium toxicity, Oxidativ. Medic. Cel. Longev., 2018 (2018) 1–9.
  34. S. Satarug, D.A. Vesey, G.C. Gobe, Kidney cadmium toxicity, diabetes and high blood pressure: the perfect storm, Tohoku J. Exp. Med., 241 (2017) 65–87.
  35. J.D.D. García, E. Arceo, Daño renal asociado a metales pesados: trabajo de revisión, Rev. Colombiana de Nefrología, 5 (2018) 43–53.
  36. X. Chen, Z. Wang, G. Zhu, G.F. Nordberg, X. Ding, T. Jin, The association between renal tubular dysfunction and zinc level in a Chinese population environmentally exposed to cadmium, Biol. Trace Elem. Res., 186 (2018) 114–121.
  37. I. Puigdomenech, Medusa Chemical Equilibrium Software. Available from: http://www.inorg.kth.se/medusa (Accessed 28 December 2018).
  38. R. Zhang, V.L. Wilson, A. Hou, G. Meng, Source of lead pollution, its influence on public health and the countermeasures. Int. J. Health Anim. Sci. Food Saf., 2 (2015) 18–31.
  39. S. Mohr, D. Giurco, M. Retamal, L. Mason, G. Mudd, Global projection of lead-zinc supply from known resources, Resources, 7 (2018) 1–17.
  40. P.J. Landrigan, Lead and the heart: an ancient metal’s contribution to modern disease, Lancet, 3 (2018) 156–157.
  41. R. Rabin, The lead industry and lead water pipes “A modest campaign.”, Am. J. Pub. Health, 98 (2008) 1584–1592.
  42. A. Mohanty, N. Budhwani, B. Ghosh, M. Tarafdar, S. Chakravarty, Lead content in new decorative paints in India, Environ. Dev. Sustain., 15 (2018) 1653–1661.
  43. S. Tiwari, I.P. Tripathi, H.L. Tiwari, Effects of lead on environment, Int. J. Emerg. Res. Manage. Technol., 2 (2013) 1–5.
  44. T. Leff, P. Stemmer, J. Tyrrell, R. Jog, Diabetes and exposure to environmental lead (Pb), Toxics, 6 (2018) 1–13.
  45. N.T. Joutey, H. Sayel, W. Bahafid, N.E.L. Ghachtouli, Mechanisms of hexavalent chromium resistance and removal by microorganisms, Rev. Environ. Contam. Toxicol., 233 (2015) 45–69.
  46. H. Oliveira, Chromium as an environmental pollutant: insights on induced plant toxicity, J. Botany, 2012 (2012) 1–8.
  47. M.L. Dotaniya, J.K. Thakur, V.D. Meena, D.K. Jajoria, G. Rathor. Chromium pollution: a threat to environment-a review, Agric. Rev., 35 (2014) 153.
  48. D.M. Hausladen, A. Alexander-Ozinskas, C. Mcclain, S. Fendorf, Hexavalent chromium sources and distribution in California groundwater, Environ. Sci. Technol., 52 (2018) 8242–8251.
  49. R.S. Sousa, L.A.P.L. Nunes, A.B. Lima, W.J. Melo, J.E.L. Antunes, A.S.F. Araujo. Chromium accumulation in maize and cowpea after successive applications of composted tannery sludge. Acta Sci. Agron., 40 (2018) 353–361.
  50. A.C. Gonçalves Jr., H. Nacke, D. Schwantes, G.F. Coelho, Heavy Metal Contamination in Brazilian Agricultural Soils due to Application of Fertilizers, In: Maria C. Hernandez Soriano (Org). Environmental Risk Assessment of Soil Contamination, 1ed., Intech, 2014, pp. 105–135.
  51. A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 3rd ed., CRC Press, Boca Raton, 2001.
  52. EUR-LEX, Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC). Available at: http://eurlex.europa.eu/LexUriServ/LexUriServ. do?uri=CELEX:31986L0278:EN:HTML
  53. Brasil, Resolution 420, Brasília: Ministry of the Environment; 2009. Available at: http://www2.mma.gov.br/port/conama/ legiabre.cfm?codlegi=620
  54. ATSDR, Agency for Toxic Substances and Disease Registry. Arsenic. Available at: https://www.atsdr.cdc.gov/substances/ toxsubstance.asp?toxid=3 (Accessed on July of 2019).
  55. ATSDR, Agency for Toxic Substances and Disease Registry. Arsenic. Available at: https://www.atsdr.cdc.gov/substances/ toxsubstance.asp?toxid=24 (Accessed on July of 2019).
  56. F.A. Samhan, M.A. Elliethy, B.A. Hemdan, M. Youssef, G.E. El-Taweel, Bioremediation of oil-contaminated water by bacterial consortium immobilized on environment-friendly biocarriers, J. Egypt Public Health Assoc., 92 (2017) 44–51.
  57. N. Sasakova, G. Gregova, D. Takacova, J. Mojzisova, I. Papajova, J. Venglovsky, T. Szaboova, S. Kovacova, Pollution of surface and ground water by sources related to agricultural activities, Front. Sustain. Food Syst., 2 (2018) 1–11.
  58. H. Sadegh, M. Mazloumbilandi, M. Chahardouri, Lowcost Materials with Adsorption Performance, Handbook of Ecomaterials, Vol. 2017, pp. 1–33.
  59. M. Gawande Sagar, S. Belwalkar Niharika, A.A. Mane, Adsorption and its isotherm – theory, Int. J. Eng. Res., 6 (2017) 312–316.
  60. A.U. Itodo, H.U. Itodo, Sorption energies estimation using Dubinin-Radushkevich and Temkin adsorption isotherms, Life Sci. J., 7 (2010) 31–39.
  61. S. Khandaker, Y. Toyohara, S. Kamida, T. Kuba, Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal, Water Resour. Ind., 19 (2018) 35–46.
  62. M. Ge, X. Wang, M. Du, G. Liang, G. Hu, J.S.M. Alam, Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: kinetic and equilibrium studies, Materials, 12 (2019) 1–16.
  63. G. Kyzas, M. Kostoglou, green adsorbents for wastewaters: a critical review, Materials, 7 (2014) 333–364.
  64. T. Neamhom, Use of agricultural residues to remove iron from groundwater in modified airlift aerator, Environ. Nat. Res. J., 17 (2019) 58–67.
  65. H. Choi, S. Yu, Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob, Environ. Eng. Res., 24 (2019) 99–106.
  66. M. El-Azazy, A.S. El-Shafie, A.A. Issa, M. Al-Sulaiti, J. Al-Yafie, B. Shomar, K. Al-Saad, Potato peels as an adsorbent for heavy metals from aqueous solutions: eco-structuring of a green adsorbent operating Plackett–Burman design, J. Chem., 2019 (2019) 1–14.
  67. G. Islamuddin, M.A. Khalid, S.A. Ahmad, Study of eco-friendly agricultural wastes as non-conventional low-cost adsorbents: a review, Ukrainian J. Ecol., 9 (2019) 68–75.
  68. G.F. Coelho, A.C. Gonçalves Jr., C.R.T. Tarley, J. Casarin, H. Nacke, M.A. Francziskowski, Removal of metal ions Cd (II), Pb (II), and Cr (III) from water by the cashew nut shell Anacardium occidentale L., Ecol. Eng., 73 (2014) 514–525.
  69. D. Schwantes, A.C. Gonçalves Jr., G.F. Coelho, M.A. Campagnolo, M.G. Santos, A.J. Miola, E.A.V. Leismann, Crambe pie modified for removal cadmium, lead and chromium from aqueous solution, Int. J. Current Res., 7 (2015) 21658–21669.
  70. A.C. Gonçalves Jr., A.P. Meneghel, F. Rubio, L. Strey, D.C. Dragunski, G.F. Coelho, Applicability of Moringa oleifera Lam. pie as an adsorbent for removal of heavy metals from waters, Rev. Bras. Eng. Agr. Amb., 17 (2013) 94–99.
  71. A.C. Gonçalves Jr., H. Nacke, D. Schwantes, M.A. Campagnolo, A.J. Miola, C.R.T. Tarley, D.C. Dragunski, F.A.C. Suquila, Adsorption mechanism of chromium(III) using biosorbents of Jatropha curcas L., Environ. Sci. Pollut. Res., 24 (2017) 21778.
  72. D. Schwantes, A.C. Gonçalves Jr., A.J. Miola, G.F. Coelho, M.G. Santos, E.A.V. Leismann, Removal of Cu (II) and Zn (II) from water with natural adsorbents from cassava agroindustry residues, Acta Sci.-Technol., 37 (2015) 409–417.
  73. D. Schwantes, A.C. Gonçalves Jr., A. De Varennes, A.L. Braccini, Modified grape stem as a renewable adsorbent for cadmium removal, Water Sci. Technol., 78 (2018) 2308–2320.
  74. N. Abidi, L. Cabrales, C.H. Haigler, Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym., 100 (2014) 9–16.
  75. L.C.D.A. Barbosa, Espectroscopia no infravermelho na caracterização de compostos orgânicos, UFV, Viçosa, 2007, 189 p.
  76. H. Schulz, M. Baranska, Identification and quantification of valuable plant substances by IR and Raman spectroscopy, Vib. Spectrosc., 43 (2007) 13–25.
  77. B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley and Sons, 2004, p. 224.
  78. A.C. Gonçalves Jr., H. Nacke, V.T. Fávere, G.D. Gomes, Comparison between an anionic exchanger of chitosan quaternary ammonium salt and a commercial exchanger in the extraction of available phosphorus in soils, Quim. Nova, 33 (2010) 1047–1052.
  79. L. Han, C. Zhang, C. Song, M. Zhang, H. Zhu, L. Zhang, Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode, Carbohydr. Polym., 79 (2010) 1140–1149.
  80. N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, Biosorption of heavy metals from aqueous solutions by chemically modified orange peel, J. Hazard. Mater., 185 (2011) 49–54.
  81. M. Iqbal, A. Saeed, S.I. Zafar, FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste, J. Hazard. Mater., 164 (2009) 161–171.
  82. W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chantai, C. Ruangviriyachai, Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties, Chem. Eng. Res. Des., 89 (2011) 335–340.
  83. F.A. Pavan, E.C. Lima, S.L. Dias, A.C. Mazzocato, Methylene blue biosorption from aqueous solutions by yellow passion fruit waste, J. Hazard. Mater., 150 (2008) 703–712.
  84. W.L.E. Smith, G.M. Gadd, Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms, J. Appl. Microbiol., 88 (2000) 983–991.
  85. T.C.M. Pastore, K.O. Santos, J.C. Rubim, A spectrocolorimetric study on the effect of ultraviolet irradiation of four tropical hardwoods, Bioresour. Technol., 93 (2004) 37–42.
  86. N. Hagemann, K. Spokas, H.P. Schmidt, R. Kägi, M. Böhler, T. Bucheli, Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs, Water, 10 (2018) 182.
  87. S. Guiza, S.H. Yahiasalwa, Y.F. Launa, M. Bagane, Production and Characterization of Activated Carbon from Orange Peels by Chemical Activation with Sulfuric Acid, Euro-Mediterranean Conference for Environmental Integration, 2018, pp. 1–3.
  88. L. Alcaraz, A. López Fernández, I. García-Díaz, F.A. López, Preparation and characterization of activated carbons from winemaking wastes and their adsorption of methylene blue, Adsorpt. Sci. Technol., 36 (2018) 1331–1351.
  89. E.S. Sanni, M.E. Emetere, J.O. Odigure, V.E. Efeovbokhan, O. Agboola, E.R. Sadiku, Determination of optimum conditions for the production of activated carbon derived from separate varieties of coconut shells, Int. J. Chem. Eng., 2017 (2017) 1–16.
  90. A.J. Alkhatib, K. Alzaailay, The appropriate use of activated charcoal in pharmaceutical and toxicological approaches, J. Sci. Technol. Res., 5 (2018) 4407–4408.
  91. A.A. Basaleh, M.H. Al-Malack, Utilization of municipal organic solid waste for production of activated carbon in Saudi Arabia, Arab. J. Sci. Eng., 43 (2016) 3585–3599.
  92. M. Fazal-Ur-Rehman, Methodological trends in preparation of activated carbon from local sources and their impacts on production: a review, Chem. Int., 4 (2018) 109–119.
  93. J.P. Castro, J.R.C. Nobre, M.L. Bianchi, P.F. Trugilho, A. Napoli, B.S. Chiou, G. Williams, D.F. Wood, R.J. Avena-Bustillos, W.J. Ortz, G.H.D. Tonoli, Activated carbons prepared by physical activation from different pretreatments of amazon piassava fibers, J. Nat. Fiber., (2018) 1–16. doi: 10.1080/15440478.2018.1442280
  94. M.A. Tadda, A. Ahsan, A. Shitu, M. Elsergany, A. Tirugnanasambantham, B. Jose, M.A. Razzaque, N.D.N.A. Norsyahariati, A review on activated carbon: process, application and prospects, J. Adv. Civil Eng. Pract. Res., 2 (2016) 7–13.
  95. R.A. Olaoye, O.D. Afolayan, O.I. Mustapha, O.G.H. Adeleke, The efficacy of banana peel activated carbon in the removal of cyanide and selected metals from cassava processing wastewater, Adv. Res., 16 (2018) 1–12.
  96. F.R.P. Sales, R.B.G. Serra, G.J.A. Figueirêdo, P.H.A. Hora, A.C. Sousa, Wastewater treatment using adsorption process in column for agricultural purposes, Rev. Amb. Água., 14 (2019) 1–9.
  97. G. Özsin, M. Kılıç, E. Apaydın-Varol, A.E. Pütün, Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: equilibrium, kinetic, and thermodynamic studies, Appl. Water Sci., 9 (2019) 1–14.
  98. E. Conradi Jr., A.C. Gonçalves Jr., D. Schwantes, J. Manfrin, A.P. Schiller, J. Zimmerman, G.J. Klassen, G.L. Ziemer, Development of renewable adsorbent from cigarettes for lead removal from water, J. Environ. Chem. Eng., 1 (2019) 1–21.
  99. J.K. Ratan, M. Kaur, B. Adiraju, Synthesis of activated carbon from agricultural waste using a simple method: characterization, parametric and isotherms study, Materials Today: Proc., 5 (2018) 3334–3345.
  100. P. Ravichandran, P. Sugumaran, S. Seshadri, Altaf H. Basta, Optimizing the route for production of activated carbon from Casuarina equisetifolia fruit waste, R. Soc. Open Sci., 5 (2018) 1–12.
  101. Z.A. AL-Othman, M. Naushad, Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies, Chem. Eng. J., 184 (2012) 238–247.
  102. M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-Fard, Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: adsorption isotherm and kinetic studies, J. Ind. Eng. Chem., 20 (2014) 2193–2199.
  103. M.A. Yahya, Z. Al-Qodah, C. Ngah, M.A. Hashim, Preparation and characterization of activated carbon from desiccated coconut residue by potassium hydroxide, Asian J. Chem., 27 (2015) 1–6.
  104. M.A. Yahya, C.W.Z.C.W. Ngah, M.A. Hashim, Z. Al-Qodah, Preparation of activated carbon from desiccated coconut residue by chemical activation with NaOH, J. Mater. Sci. Res., 5 (2016) 24.
  105. R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol Eng., 91 (2016) 317–332.
  106. S. Gupta, B.V. Babu, Economic feasibility analysis of low cost adsorbents for the removal of Cr(VI) from wastewater (2008). Available at: https://www.semanticscholar.org/paper/ Economic-feasibility-analysis-of-low-cost-for-the-(-Gupta- Babu/c0177bf4852d7be427b832a42d6ac45a543c5a43
  107. M. Banerjee, R.K. Basu, S.K. Das, Cr(VI) adsorption by a green adsorbent walnut shell: adsorption studies, regeneration studies, scale-up design and economic feasibility, Process Saf. Environ. Prot., 116 (2018) 693–702.
  108. M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural biowaste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev., 46 (2015) 218–235.
  109. M. Naushad, T. Ahamad, G. Sharma, A.A. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/ SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J., 300 (2016) 306–316.