References
- S.A. Alrumman, A.F. El-kott, S.M.A.S. Keshk, Water pollution:
source and treatment, Am. J. Environ. Eng., 6 (2016) 88–98.
- M.A. Arefin, A. Mallik, Sources and causes of water pollution
in Bangladesh: a technical overview, Bibechana, 15 (2018)
97–112.
- G.M. Al-Senani, F.F. Al-Fawzan, Study on adsorption of Cu and
Ba from aqueous solutions using nanoparticles of origanum
(OR) and lavandula (LV), Bioinorg. Chem. Appl., 2018 (2018)
1–8.
- A. Emamverdian, Y. Ding, F. Mokhberdoran, Y. Xie, Heavy
metal stress and some mechanisms of plant defense response.
Sci. World J., 2015 (2015) 1–18.
- N. Arif, V. Yadav, S. Singh, S. Singh, P. Ahmad, R.K. Mishra,
S. Sharma, D.K. Tripathi, D.K. Dubey, D.K. Chauhan, Influence
of high and low levels of plant-beneficial heavy metal ions on
plant growth and development, Front. Environ. Sci., 4 (2016)
1–11.
- C.H. Lin, Y.T. Hsu, C.C. Yen, H.H. Chen, C.J. Tseng, Y.K. Lo,
J.Y.H. Chan, Association between heavy metal levels and acute
ischemic stroke, J. Biomed. Sci., 25 (2018) 1–8.
- W. Wani, K.Z. Masoodi, A. Zaid, S.H. Wani, F. Shah, V.S. Meena,
S.A. Wazi, K.A. Mosa, Engineering plants for heavy metal stress
tolerance, Rendiconti Lincei. Scienze Fisiche e Naturali., 29 (2018)
709–723.
- R.K. Gautam, S.K. Sharma, S. Mahiya, M.C. Chattopadhyaya,
Contamination of heavy metals in aquatic media: transport,
toxicity and technologies for remediation, Heavy Met. Water,
2018, 1–24. doi:10.1039/9781782620174–00001.
- F.L. Furlan, N.C. Filho, M.F.B. Consolin, M.S. Gonçalves,
P. Valderrama, A.K. Genena, Use of agricultural and agroindustrial
residues as alternative adsorbents of manganese and iron
in aqueous solution, Rev. Amb. Água., 13 (2018) 1–12.
- D. Schwantes, A.C. Gonçalves Jr., M.A. Campagnolo, C.R.T.
Tarley, D.C. Dragunski, A. de Varennes, A.K.S. Santos, E. Conradi,
Chemical modifications on pinus bark for adsorption of
toxic metals, J. Environ. Chem. Eng., 6 (2018) 10–22.
- D. Schwantes, A.C. Gonçalves Jr., L. Strey, V. Schwantes,
H. Nacke, Reuse and Recycling Techniques: kinetics, Equilibrium
and Thermodynamics of the Adsorption Process of Lead Using
Cassava Industry Wastes, In: HELENA BÁRTOLO, José Pinto
Duarte (Org.), Green Design, Materials and Manufacturing
Processes, 1 ed., CRC Press Taylor & Francis Group, Boca Raton,
Vol. 2013, 2013, pp. 417–422.
- H. Nacke, A.C. Gonçalves Jr., G.F. Coelho, L. Strey, A. Laufer,
Removal of cadmium from aqueous solutions by adsorption on
Jatropha biomass, 1 (2013) 367–372. In: HELENA BÁRTOLO,
José Pinto Duarte. (Org.). Green Design, Materials and
Manufacturing Processes, 1st ed., CRC Press Taylor & Francis
Group, Boca Raton, 2013 (2013) 367–372.
- A.C. Gonçalves Jr., D. Schwantes, M.A. Campagnolo, D.C. Dragunski,
C.R. Tarley, A.K.S. Silva, Removal of toxic metals using
endocarp of açaí berry as biosorbent, Water Sci. Technol.,
77 (2018) doi: 10.2166/wst.2018.032.
- D. Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi,
S. Agarwal, V.K. Gupta, The use of low-cost adsorbent (Canola
residues) for the adsorption of methylene blue from aqueous
solution: isotherm, kinetic and thermodynamic studies, Colloid
Interface Sci. Commun., 7 (2015) 16–19.
- M. Feizi, M. Jalali, Removal of heavy metals from aqueous
solutions using sunflower, potato, canola and walnut shell
residues, J. Taiwan Inst. Chem. Eng., 55 (2015) 125–136.
- D. Balarak, F.K. Mostafapour, Adsorption behavior of Acid Red
97 Dye on Canola Stalks, J. Sci. Eng. Res., 3 (2016) 148–154.
- C.R. Girish, V.R. Murty, Mass transfer studies on adsorption of
phenol from wastewater using Lantana camara, Forest Waste,
Int. J. Chem. Eng., 2016 (2016) 1–11.
- N.C. Corda, M.S. Kini, A review on adsorption of cationic
dyes using activated carbon, MATEC Web Conf., 144 (2018)
2–22.
- J. Zhou, A. Luo, Y. Zhao, Preparation and characterisation of
activated carbon from waste tea by physical activation using
steam. J. Air Waste Manage. Assoc., 68 (2018) 1269–1277.
- D. Bergna, T. Varila, H. Romar, U. Lassi, Comparison of the
properties of activated carbons produced in one-stage and twostage
processes, J. Carbon Res., 4 (2018) 41–50.
- M.A. Razi, A. Al-Gheethi, M. Al-Qaini, A. Yousef, Efficiency
of activated carbon from palm kernel shell for treatment of
greywater, Arab J. Basic Appl. Sci., 25 (2018) 103–110.
- M. Kuroda, K. Hara, M. Takekawa, M. Uwasu, M. Ike, Historical
trends of academic research on the water environment in Japan:
evidence from the Academic Literature in the Past 50 Years,
Water, 10 (2018) 1–15.
- A.E. Duncan, N. De Vries, K.B. Nyarko, Assessment of heavy
metal pollution in the sediments of the River Pra and its
tributaries, Water Air Soil Pollut., 229 (2018) 1–10.
- W.L. Copa, Geological classification for the rocks of weathering,
Petrol. Sci. Eng., 2 (2018) 1–6.
- S. Blackmore, B. Vriens, M. Sorensen, I.M. Power, L. Smith,
S.J. Hallan, K.U. Mayer, R.D. Beckie, Microbial and geochemical
controls on waste rock weathering and drainage quality, Sci.
Total Environ., 640 (2018) 1004–1014.
- P. Hunter, Essentially deadly: living with toxic elements: Humans
and plants have evolved various mechanisms to deal with and
even adopt toxic heavy metals, EMBO Rep., 16 (2015) 1605–1608.
- M.M. Onakpa, A.A. Njan, O.C. Kalu, A review of heavy metal
contamination of food crops in Nigeria, Glob. Health, 84 (2018)
488–494.
- Y.A. Naggar, M.S. Khali, A.M. Ghorab, Environmental pollution
by heavy metals in the aquatic ecosystems of Egypt, Open Acc.
J. Toxicol., 3 (2018) 555–603.
- G.Y. Sara, A. Emmanuel, I. Joseph, J.E. Eneche, M.S. Galo,
Determination of the level of heavy metals in some selected
vegetables from an irrigated farmland of Kudenda in Kaduna
Metropolis, Nigeria, Asian J. Environ. Ecol., 7 (2018) 1–8.
- A.C. Gonçalves Jr, E.B. Luchese, E. Lenzi, Avaliação da
fitodisponibilidade de cádmio, chumbo e cromo, em soja
cultivada em Latossolo Vermelho Escuro tratado com fertilizantes
comerciais, Quim. Nova, 3 (2000) 173–177.
- R.A. Bernhoft, Cadmium Toxicity and Treatment, Sci. World J.,
3 (2013) 1–7.
- S. Satarug, Dietary cadmium intake and its effects on kidneys,
Toxics, 6 (2018) 1–15.
- H.R. Marini, D. Puzzolo, A. Micali, E.B. Adamo, N. Irrera,
A. Pisani, G. Pallio, V. Trichilo, C. Malta, A. Bitto, S. Squadrito,
D., Altavilla, L. Minutoli, Neuroprotective effects of polydeoxyribonucleotide
in a murine model of cadmium toxicity,
Oxidativ. Medic. Cel. Longev., 2018 (2018) 1–9.
- S. Satarug, D.A. Vesey, G.C. Gobe, Kidney cadmium toxicity,
diabetes and high blood pressure: the perfect storm, Tohoku J.
Exp. Med., 241 (2017) 65–87.
- J.D.D. García, E. Arceo, Daño renal asociado a metales pesados:
trabajo de revisión, Rev. Colombiana de Nefrología, 5 (2018)
43–53.
- X. Chen, Z. Wang, G. Zhu, G.F. Nordberg, X. Ding, T. Jin,
The association between renal tubular dysfunction and zinc
level in a Chinese population environmentally exposed to
cadmium, Biol. Trace Elem. Res., 186 (2018) 114–121.
- I. Puigdomenech, Medusa Chemical Equilibrium Software.
Available from: http://www.inorg.kth.se/medusa (Accessed
28 December 2018).
- R. Zhang, V.L. Wilson, A. Hou, G. Meng, Source of lead pollution,
its influence on public health and the countermeasures. Int. J.
Health Anim. Sci. Food Saf., 2 (2015) 18–31.
- S. Mohr, D. Giurco, M. Retamal, L. Mason, G. Mudd, Global
projection of lead-zinc supply from known resources, Resources,
7 (2018) 1–17.
- P.J. Landrigan, Lead and the heart: an ancient metal’s
contribution to modern disease, Lancet, 3 (2018) 156–157.
- R. Rabin, The lead industry and lead water pipes “A modest
campaign.”, Am. J. Pub. Health, 98 (2008) 1584–1592.
- A. Mohanty, N. Budhwani, B. Ghosh, M. Tarafdar, S. Chakravarty,
Lead content in new decorative paints in India, Environ.
Dev. Sustain., 15 (2018) 1653–1661.
- S. Tiwari, I.P. Tripathi, H.L. Tiwari, Effects of lead on
environment, Int. J. Emerg. Res. Manage. Technol., 2 (2013) 1–5.
- T. Leff, P. Stemmer, J. Tyrrell, R. Jog, Diabetes and exposure
to environmental lead (Pb), Toxics, 6 (2018) 1–13.
- N.T. Joutey, H. Sayel, W. Bahafid, N.E.L. Ghachtouli, Mechanisms
of hexavalent chromium resistance and removal by microorganisms,
Rev. Environ. Contam. Toxicol., 233 (2015) 45–69.
- H. Oliveira, Chromium as an environmental pollutant: insights
on induced plant toxicity, J. Botany, 2012 (2012) 1–8.
- M.L. Dotaniya, J.K. Thakur, V.D. Meena, D.K. Jajoria, G. Rathor.
Chromium pollution: a threat to environment-a review, Agric.
Rev., 35 (2014) 153.
- D.M. Hausladen, A. Alexander-Ozinskas, C. Mcclain, S. Fendorf,
Hexavalent chromium sources and distribution in California
groundwater, Environ. Sci. Technol., 52 (2018) 8242–8251.
- R.S. Sousa, L.A.P.L. Nunes, A.B. Lima, W.J. Melo, J.E.L. Antunes,
A.S.F. Araujo. Chromium accumulation in maize and cowpea
after successive applications of composted tannery sludge. Acta
Sci. Agron., 40 (2018) 353–361.
- A.C. Gonçalves Jr., H. Nacke, D. Schwantes, G.F. Coelho, Heavy
Metal Contamination in Brazilian Agricultural Soils due to
Application of Fertilizers, In: Maria C. Hernandez Soriano
(Org). Environmental Risk Assessment of Soil Contamination,
1ed., Intech, 2014, pp. 105–135.
- A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and
Plants, 3rd ed., CRC Press, Boca Raton, 2001.
- EUR-LEX, Council Directive of 12 June 1986 on the Protection
of the Environment, and in Particular of the Soil,
When Sewage Sludge Is Used in Agriculture (86/278/EEC).
Available at: http://eurlex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:31986L0278:EN:HTML
- Brasil, Resolution 420, Brasília: Ministry of the Environment;
2009. Available at: http://www2.mma.gov.br/port/conama/
legiabre.cfm?codlegi=620
- ATSDR, Agency for Toxic Substances and Disease Registry.
Arsenic. Available at: https://www.atsdr.cdc.gov/substances/
toxsubstance.asp?toxid=3 (Accessed on July of 2019).
- ATSDR, Agency for Toxic Substances and Disease Registry.
Arsenic. Available at: https://www.atsdr.cdc.gov/substances/
toxsubstance.asp?toxid=24 (Accessed on July of 2019).
- F.A. Samhan, M.A. Elliethy, B.A. Hemdan, M. Youssef,
G.E. El-Taweel, Bioremediation of oil-contaminated water by
bacterial consortium immobilized on environment-friendly
biocarriers, J. Egypt Public Health Assoc., 92 (2017) 44–51.
- N. Sasakova, G. Gregova, D. Takacova, J. Mojzisova, I. Papajova,
J. Venglovsky, T. Szaboova, S. Kovacova, Pollution of surface
and ground water by sources related to agricultural activities,
Front. Sustain. Food Syst., 2 (2018) 1–11.
- H. Sadegh, M. Mazloumbilandi, M. Chahardouri, Lowcost
Materials with Adsorption Performance, Handbook of
Ecomaterials, Vol. 2017, pp. 1–33.
- M. Gawande Sagar, S. Belwalkar Niharika, A.A. Mane,
Adsorption and its isotherm – theory, Int. J. Eng. Res., 6 (2017)
312–316.
- A.U. Itodo, H.U. Itodo, Sorption energies estimation using
Dubinin-Radushkevich and Temkin adsorption isotherms,
Life Sci. J., 7 (2010) 31–39.
- S. Khandaker, Y. Toyohara, S. Kamida, T. Kuba, Adsorptive
removal of cesium from aqueous solution using oxidized
bamboo charcoal, Water Resour. Ind., 19 (2018) 35–46.
- M. Ge, X. Wang, M. Du, G. Liang, G. Hu, J.S.M. Alam,
Adsorption analyses of phenol from aqueous solutions using
magadiite modified with organo-functional groups: kinetic and
equilibrium studies, Materials, 12 (2019) 1–16.
- G. Kyzas, M. Kostoglou, green adsorbents for wastewaters:
a critical review, Materials, 7 (2014) 333–364.
- T. Neamhom, Use of agricultural residues to remove iron from
groundwater in modified airlift aerator, Environ. Nat. Res. J.,
17 (2019) 58–67.
- H. Choi, S. Yu, Biosorption of methylene blue from aqueous
solution by agricultural bioadsorbent corncob, Environ. Eng.
Res., 24 (2019) 99–106.
- M. El-Azazy, A.S. El-Shafie, A.A. Issa, M. Al-Sulaiti, J. Al-Yafie,
B. Shomar, K. Al-Saad, Potato peels as an adsorbent for heavy
metals from aqueous solutions: eco-structuring of a green
adsorbent operating Plackett–Burman design, J. Chem., 2019
(2019) 1–14.
- G. Islamuddin, M.A. Khalid, S.A. Ahmad, Study of eco-friendly
agricultural wastes as non-conventional low-cost adsorbents: a
review, Ukrainian J. Ecol., 9 (2019) 68–75.
- G.F. Coelho, A.C. Gonçalves Jr., C.R.T. Tarley, J. Casarin,
H. Nacke, M.A. Francziskowski, Removal of metal ions Cd
(II), Pb (II), and Cr (III) from water by the cashew nut shell
Anacardium occidentale L., Ecol. Eng., 73 (2014) 514–525.
- D. Schwantes, A.C. Gonçalves Jr., G.F. Coelho, M.A. Campagnolo,
M.G. Santos, A.J. Miola, E.A.V. Leismann, Crambe
pie modified for removal cadmium, lead and chromium from
aqueous solution, Int. J. Current Res., 7 (2015) 21658–21669.
- A.C. Gonçalves Jr., A.P. Meneghel, F. Rubio, L. Strey, D.C.
Dragunski, G.F. Coelho, Applicability of Moringa oleifera Lam.
pie as an adsorbent for removal of heavy metals from waters,
Rev. Bras. Eng. Agr. Amb., 17 (2013) 94–99.
- A.C. Gonçalves Jr., H. Nacke, D. Schwantes, M.A. Campagnolo,
A.J. Miola, C.R.T. Tarley, D.C. Dragunski, F.A.C. Suquila,
Adsorption mechanism of chromium(III) using biosorbents of
Jatropha curcas L., Environ. Sci. Pollut. Res., 24 (2017) 21778.
- D. Schwantes, A.C. Gonçalves Jr., A.J. Miola, G.F. Coelho, M.G.
Santos, E.A.V. Leismann, Removal of Cu (II) and Zn (II) from
water with natural adsorbents from cassava agroindustry
residues, Acta Sci.-Technol., 37 (2015) 409–417.
- D. Schwantes, A.C. Gonçalves Jr., A. De Varennes, A.L. Braccini,
Modified grape stem as a renewable adsorbent for cadmium
removal, Water Sci. Technol., 78 (2018) 2308–2320.
- N. Abidi, L. Cabrales, C.H. Haigler, Changes in the cell wall
and cellulose content of developing cotton fibers investigated
by FTIR spectroscopy. Carbohydr. Polym., 100 (2014) 9–16.
- L.C.D.A. Barbosa, Espectroscopia no infravermelho na
caracterização de compostos orgânicos, UFV, Viçosa, 2007, 189 p.
- H. Schulz, M. Baranska, Identification and quantification of
valuable plant substances by IR and Raman spectroscopy, Vib.
Spectrosc., 43 (2007) 13–25.
- B.H. Stuart, Infrared Spectroscopy: Fundamentals and
Applications, John Wiley and Sons, 2004, p. 224.
- A.C. Gonçalves Jr., H. Nacke, V.T. Fávere, G.D. Gomes, Comparison
between an anionic exchanger of chitosan quaternary
ammonium salt and a commercial exchanger in the extraction
of available phosphorus in soils, Quim. Nova, 33 (2010)
1047–1052.
- L. Han, C. Zhang, C. Song, M. Zhang, H. Zhu, L. Zhang,
Characterization of modified wheat straw, kinetic and equilibrium
study about copper ion and methylene blue adsorption
in batch mode, Carbohydr. Polym., 79 (2010) 1140–1149.
- N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, Biosorption of heavy
metals from aqueous solutions by chemically modified orange
peel, J. Hazard. Mater., 185 (2011) 49–54.
- M. Iqbal, A. Saeed, S.I. Zafar, FTIR spectrophotometry, kinetics
and adsorption isotherms modeling, ion exchange, and EDX
analysis for understanding the mechanism of Cd2+ and Pb2+
removal by mango peel waste, J. Hazard. Mater., 164 (2009)
161–171.
- W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chantai,
C. Ruangviriyachai, Preparation of activated carbon derived
from Jatropha curcas fruit shell by simple thermo-chemical
activation and characterization of their physico-chemical
properties, Chem. Eng. Res. Des., 89 (2011) 335–340.
- F.A. Pavan, E.C. Lima, S.L. Dias, A.C. Mazzocato, Methylene
blue biosorption from aqueous solutions by yellow passion
fruit waste, J. Hazard. Mater., 150 (2008) 703–712.
- W.L.E. Smith, G.M. Gadd, Reduction and precipitation of
chromate by mixed culture sulphate-reducing bacterial biofilms,
J. Appl. Microbiol., 88 (2000) 983–991.
- T.C.M. Pastore, K.O. Santos, J.C. Rubim, A spectrocolorimetric
study on the effect of ultraviolet irradiation of four tropical
hardwoods, Bioresour. Technol., 93 (2004) 37–42.
- N. Hagemann, K. Spokas, H.P. Schmidt, R. Kägi, M. Böhler,
T. Bucheli, Activated carbon, biochar and charcoal: linkages and
synergies across pyrogenic carbon’s ABCs, Water, 10 (2018) 182.
- S. Guiza, S.H. Yahiasalwa, Y.F. Launa, M. Bagane, Production
and Characterization of Activated Carbon from Orange Peels by
Chemical Activation with Sulfuric Acid, Euro-Mediterranean
Conference for Environmental Integration, 2018, pp. 1–3.
- L. Alcaraz, A. López Fernández, I. García-Díaz, F.A. López,
Preparation and characterization of activated carbons from
winemaking wastes and their adsorption of methylene blue,
Adsorpt. Sci. Technol., 36 (2018) 1331–1351.
- E.S. Sanni, M.E. Emetere, J.O. Odigure, V.E. Efeovbokhan,
O. Agboola, E.R. Sadiku, Determination of optimum conditions
for the production of activated carbon derived from separate
varieties of coconut shells, Int. J. Chem. Eng., 2017 (2017) 1–16.
- A.J. Alkhatib, K. Alzaailay, The appropriate use of activated
charcoal in pharmaceutical and toxicological approaches, J. Sci.
Technol. Res., 5 (2018) 4407–4408.
- A.A. Basaleh, M.H. Al-Malack, Utilization of municipal organic
solid waste for production of activated carbon in Saudi Arabia,
Arab. J. Sci. Eng., 43 (2016) 3585–3599.
- M. Fazal-Ur-Rehman, Methodological trends in preparation
of activated carbon from local sources and their impacts on
production: a review, Chem. Int., 4 (2018) 109–119.
- J.P. Castro, J.R.C. Nobre, M.L. Bianchi, P.F. Trugilho, A. Napoli,
B.S. Chiou, G. Williams, D.F. Wood, R.J. Avena-Bustillos, W.J.
Ortz, G.H.D. Tonoli, Activated carbons prepared
by physical
activation from different pretreatments of amazon piassava fibers,
J. Nat. Fiber., (2018) 1–16. doi: 10.1080/15440478.2018.1442280
- M.A. Tadda, A. Ahsan, A. Shitu, M. Elsergany, A. Tirugnanasambantham,
B. Jose, M.A. Razzaque, N.D.N.A. Norsyahariati,
A review on activated carbon: process, application and
prospects, J. Adv. Civil Eng. Pract. Res., 2 (2016) 7–13.
- R.A. Olaoye, O.D. Afolayan, O.I. Mustapha, O.G.H. Adeleke,
The efficacy of banana peel activated carbon in the removal
of cyanide and selected metals from cassava processing
wastewater, Adv. Res., 16 (2018) 1–12.
- F.R.P. Sales, R.B.G. Serra, G.J.A. Figueirêdo, P.H.A. Hora,
A.C. Sousa, Wastewater treatment using adsorption process in
column for agricultural purposes, Rev. Amb. Água., 14 (2019)
1–9.
- G. Özsin, M. Kılıç, E. Apaydın-Varol, A.E. Pütün, Chemically
activated carbon production from agricultural waste of
chickpea and its application for heavy metal adsorption:
equilibrium, kinetic, and thermodynamic studies, Appl. Water
Sci., 9 (2019) 1–14.
- E. Conradi Jr., A.C. Gonçalves Jr., D. Schwantes, J. Manfrin,
A.P. Schiller, J. Zimmerman, G.J. Klassen, G.L. Ziemer,
Development of renewable adsorbent from cigarettes for lead
removal from water, J. Environ. Chem. Eng., 1 (2019) 1–21.
- J.K. Ratan, M. Kaur, B. Adiraju, Synthesis of activated carbon
from agricultural waste using a simple method: characterization,
parametric and isotherms study, Materials Today:
Proc., 5 (2018) 3334–3345.
- P. Ravichandran, P. Sugumaran, S. Seshadri, Altaf H. Basta,
Optimizing the route for production of activated carbon from
Casuarina equisetifolia fruit waste, R. Soc. Open Sci., 5 (2018)
1–12.
- Z.A. AL-Othman, M. Naushad, Hexavalent chromium
removal from aqueous medium by activated carbon prepared
from peanut shell: adsorption kinetics, equilibrium and
thermodynamic studies, Chem. Eng. J., 184 (2012) 238–247.
- M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-Fard,
Adsorption of Pb(II) from aqueous solution using new
adsorbents prepared from agricultural waste: adsorption isotherm
and kinetic studies, J. Ind. Eng. Chem., 20 (2014) 2193–2199.
- M.A. Yahya, Z. Al-Qodah, C. Ngah, M.A. Hashim, Preparation
and characterization of activated carbon from desiccated
coconut residue by potassium hydroxide, Asian J. Chem.,
27 (2015) 1–6.
- M.A. Yahya, C.W.Z.C.W. Ngah, M.A. Hashim, Z. Al-Qodah,
Preparation of activated carbon from desiccated coconut
residue by chemical activation with NaOH, J. Mater. Sci. Res.,
5 (2016) 24.
- R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of
using green adsorbent of heavy metal removal from aqueous
solutions: adsorption kinetics, isotherm, thermodynamic,
mechanism and economic analysis, Ecol Eng., 91 (2016)
317–332.
- S. Gupta, B.V. Babu, Economic feasibility analysis of low
cost adsorbents for the removal of Cr(VI) from wastewater
(2008). Available at: https://www.semanticscholar.org/paper/
Economic-feasibility-analysis-of-low-cost-for-the-(-Gupta-
Babu/c0177bf4852d7be427b832a42d6ac45a543c5a43
- M. Banerjee, R.K. Basu, S.K. Das, Cr(VI) adsorption by a green
adsorbent walnut shell: adsorption studies, regeneration
studies, scale-up design and economic feasibility, Process Saf.
Environ. Prot., 116 (2018) 693–702.
- M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural biowaste
materials as potential sustainable precursors used
for activated carbon production: a review, Renew. Sustain.
Energy Rev., 46 (2015) 218–235.
- M. Naushad, T. Ahamad, G. Sharma, A.A. Al-Muhtaseb,
A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri,
A.A. Ghfar, Synthesis and characterization of a new starch/
SnO2 nanocomposite for efficient adsorption of toxic Hg2+
metal ion, Chem. Eng. J., 300 (2016) 306–316.