References
- A. Blanco, D. Hermosilla, C. Negro, Wastewater Reuse and
Current Challenges: Water Reuse Within the Paper Industry,
Springer, Cham, Switzerland, 2015.
- R. Sridhar, V. Sivakumar, K. Thirugnanasambandham, Response
surface modeling and optimization of upflow anaerobic sludge
blanket reactor process parameters for the treatment of bagasse
based pulp and paper industry wastewater, Desal. Water Treat.,
57 (2015) 1–12.
- A. Raj, S. Kumar, I. Haq, S.K. Singh, Bioremediation and toxicity
reduction in pulp and paper mill effluent by newly isolated
ligninolytic Paenibacillus sp., Ecol. Eng., 71 (2014) 355–362.
- P.C. Lindholm-Lehto, J.S. Knuutinen, H.S.J. Ahkola, S.H. Herve,
Refractory organic pollutants and toxicity in pulp and paper
mill wastewaters, Environ. Sci. Pollut. Res., 22 (2015) 6473–6499.
- S.J. Jahren, J.A. Rintala, H. Ødegaard, Aerobic moving bed
biofilm reactor treating thermomechanical pulping whitewater
under thermophilic conditions, Water. Res., 36 (2002) 1067–1075.
- N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, M. Omidinasab,
Efficient integrated processes for pulp and paper wastewater
treatment and phytotoxicity reduction: permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate, Chem. Eng. J., 308
(2017) 142–150.
- M.A. Hubbe, J.R. Metts, D. Hermosilla, M.A. Blanco, L. Yerushalmi,
F. Haghighat, P. Lindholm-Lehto, Z. Khodaparast,
M. Kamali, A. Elliott, Wastewater treatment and reclamation: a
review of pulp and paper industry practices and opportunities,
BioResources, 11 (2016) 7953–8091.
- C. Zhang, J. Chen, Z. Wen, Alternative policy assessment for
water RO pollution control in China’s pulp and paper industry,
Resour. Conserv. Recycl., 66 (2012) 15–26.
- D. Hermosilla, N. Merayo, A. Gascó, Á. Blanco, The application
of advanced oxidation technologies to the treatment of effluents
from the pulp and paper industry: a review, Environ. Sci. Pollut.
Res., 22 (2015) 168–91.
- N. Merayo, D. Hermosilla, L. Blanco, L. Cortijo, Á. Blanco,
Assessing the application of advanced oxidation processes,
and their combination with biological treatment, to effluents
from pulp and paper industry, J. Hazard. Mater., 262 (2013)
420–427.
- N.N. Mahamuni, Y.G. Adewuyi, Advanced oxidation processes
(AOPs) involving ultrasound for wastewater treatment: a
review with emphasis on cost estimation, Ultrason. Sonochem.,
17 (2010) 990–1003.
- X. Lü, Q. Zhang, W. Yang, X. Li, L. Zeng, L. Li, Catalytic
ozonation of 2, 4-dichlorophenoxyacetic acid over novel Fe-Ni/
AC, RSC Adv., 5 (2015) 10537–10545.
- P. Liu, S. He, H. Wei, J. Wang, C. Sun, Characterization of
α-Fe2O3/γ-Al2O3 catalysts for catalytic wet peroxide oxidation
of m-cresol, Ind. Eng. Chem. Res., 54 (2016) 130–136.
- Y. Zhang, Y. Zhao, S. Cao, Z. Yin, L. Wu, Design and synthesis of
hierarchical SiO2@C/TiO2 hollow spheres for high performance
supercapacitors, ACS Appl. Mater. Interfaces, 9 (2017)
29982–29991.
- X.C. Li, W.J. Zheng, G.H. He, R. Zhao, D. Liu, Morphology
control of TiO2 nanoparticle in microemulsion and its
photocatalytic property, ACS Sustainable Chem. Eng., 2 (2013)
288–295.
- C. Adán, A. Bahamonde, M. Fernández-García, A. Martínez-Arias, Structure and activity of nanosized iron-doped anatase
TiO2 catalysts for phenol photocatalytic degradation, Appl.
Catal., B, 72 (2007) 11–17.
- A. Banisharif, A.A. Khodadadi, Y. Mortazavi, A. Anaraki
Firooz, J. Beheshtian, S. Agah, S. Menbari, Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene
in air under UV and visible light irradiation: experimental and
computational studies, Appl. Catal., B, 165 (2015) 209–221.
- G. Matafonova, V. Batoev, Recent dvances in application of UV
light-emitting diodes for degrading organic pollutants in water
through advanced oxidation processes: a review, Water Res.,
132 (2018) 177–189.
- L. Song, X. Zhao, L. Cao, J.W. Moon, B. Gu, W. Wang, Synthesis
of rare earth doped TiO2 nanorods as photocatalysts for lignin
degradation, Nanoscale, 7 (2015) 16695–16703.
- C. Byrne, L. Moran, D. Hermosilla, N. Merayo, Á. Blanco,
S. Rhatigan, S. Hinder, P. Ganguly, M. Nolan, S.C. Pillai, Effect
of Cu doping on the anatase-to-rutile phase transition in
TiO2 photocatalysts: theory and experiments, Appl. Catal., B,
246 (2019) 266–276.
- Y. Zhang, H. Zhang, Y. Xu, Y. Wang, Significant effect
of lanthanide doping on the texture and properties of
nanocrystalline mesoporous TiO2, J. Solid State Chem., 177 (2004)
3490–3498.
- Y.H. Chen, M. Franzreb, R.H. Lin, L.L. Chen, P.C. Chiang,
Platinum-doped TiO2/magnetic poly(methyl methacrylate)
microspheres as a novel photocatalyst, Ind. Eng. Chem. Res.,
48 (2009) 7616–7623.
- M. Trueba, S.P. Trasatti, γ‐alumina as a support for catalysts: a
review of fundamental aspects, Eur. J. Inorg. Chem., 17 (2005)
3393–3403.
- B. Kasprzyk-Hordern, Chemistry of alumina, reactions in
aqueous solution and its application in water treatment, Adv.
Colloid Interface Sci., 110 (2004) 19–48.
- R. Gracia, S. Cortés, J. Sarasa, P. Ormad, J.L. Ovelleiro,
Heterogeneous catalytic ozonation with supported titanium
dioxide in model and natural waters, Ozone Sci. Eng., 22 (2000)
461–471.
- A.G. Thomas, K.L. Syres, Adsorption of organic molecules on
rutile TiO2 and anatase TiO2 single crystal surfaces, Chem. Soc.
Rev., 41 (2012) 4207–4217.
- X.L. Jia, Y. Wang, R.S. Xin, Q.L. Jia, H.J. Zhang, Preparation
of rare-earth element doped titanium oxide thin films and
photocatalysis properties, Key Eng. Mater., 336–338 (2007)
1946–1948.
- Y. Chen, Q. Wu, N.S. Bu, J. Wang, Y.T. Song, Magnetic recyclable
lanthanum-nitrogen co-doped titania/strontium ferrite/
diatomite heterojunction composite for enhanced visible-lightdriven
photocatalytic activity and recyclability, Chem. Eng. J.,
373 (2019) 192–202.
- T.G. Deepak, D. Subash, G.S. Anjusree, K.R.N. Pai, S.V. Nair,
A.S. Nair, Photovoltaic property of anatase TiO2 3-D mesoflowers,
ACS Sustainable Chem. Eng., 2 (2014) 2772–2780.
- J. Yoon, E. Shim, S. Bae, H. Joo, Application of immobilized
nanotubular TiO2 electrode for photocatalytic hydrogen
evolution: reduction of hexavalent chromium (Cr(VI)) in water,
J. Hazard. Mater., 161 (2009) 1069–1074.
- S. He, J. Li, J. Xu, L. Mo, Enhanced removal of COD and
color in paper-making wastewater by ozonation catalyzed
by Fe supported on activated carbon, BioResources, 11 (2016)
8396–8404.
- J.G. Yu, Y.R. Su, B. Cheng, Template-free fabrication and
enhanced photocatalytic activity of hierarchical macro-/mesoporous titania, Adv. Funct. Mater., 17 (2007) 1984–1990.
- M.L. Garcia-Benjume, M.I. Espitia-Cabrera, M.E. Contreras-Garcia, Enhanced photocatalytic activity of hierarchical macromesoporous
anatase by ZrO2 incorporation, Int. J. Photoenergy,
2012 (2012) 1–10.
- M. Ahmadi, B. Kakavandi, N. Jaafarzadeh, A. Akbar Babaei,
Catalytic ozonation of high saline petrochemical wastewater
using PAC@FeIIFe2IIIO4: optimization, mechanisms and
biodegradability studies, Sep. Purif. Technol., 177 (2017)
293–303.
- A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Catalytic
ozonation for the removal of organic contaminants in water on
alumina, Appl. Catal., B, 165 (2015) 408–418.
- S.P. Tong, R. Shi, H. Zhang, C.A. Ma, Kinetics of Fe3O4-CoO/Al2O3
catalytic ozonation of the herbicide 2-(2,4-dichlorophenoxy)
propionic acid, J. Hazard. Mater., 185 (2011) 162–167.
- J. Lee, S. Lee, S. Yu, D. Rhew, Relationships between water
quality parameters in rivers and lakes: BOD5, COD, NBOPs, and
TOC, Environ. Monit. Assess., 188 (2016) 252.
- G. Thompson, J. Swain, M. Kay, C.F. Forster, The treatment
of pulp and paper mill effluent: a review, Bioresour. Technol.,
77 (2001) 275–286.
- R. Rosal, M.S. Gonzalo, A. Rodríguez, J.A. Perdigón-Melón,
E. García-Calvo, Catalytic ozonation of atrazine and linuron on
MnOX/Al2O3 and MnOX/SBA-15 in a fixed bed reactor, Chem.
Eng. J., 165 (2010) 806–812.
- S. Tong, R. Shi, H. Zhang, C. Ma, Catalytic performance of Fe3O4-CoO/Al2O3 catalyst in ozonation of 2-(2,4-dichlorophenoxy)
propionic acid, nitrobenzene and oxalic acid in water, J. Environ.
Sci., 22 (2010) 1623–1628.
- G. Abdelli, N.K.V. Leitner, Oxidation of cyanuric acid in
aqueous solution by catalytic ozonation, Ozone Sci. Eng.,
38 (2015) 233–241.
- A.A. Aghapour, G. Moussavi, K. Yaghmaeian, Degradation
and COD removal of catechol in wastewater using the catalytic
ozonation process combined with the cyclic rotating-bed
biological reactor, J. Environ. Manage., 157 (2015) 262–266.
- Y. Nie, N. Li, C. Hu, Enhanced inhibition of bromate formation
in catalytic ozonation of organic pollutants over Fe-Al LDH/Al2O3, Sep. Purif. Technol., 151 (2015) 256–261.
- S. He, L. Pengcheng, M. Lihuan, X. Jun, L. Jun, Z. Liqi, Z. Jinsong,
Mineralization of recalcitrant organic pollutants in pulp and
paper mill wastewaters through ozonation catalyzed by Cu-Ce
supported on Al2O3, BioResources, 13 (2018) 3686–3703.
- F. Deng, S. Qiu, C. Chen, X. Ding, F. Ma, Heterogeneous catalytic
ozonation of refinery wastewater over alumina-supported Mn
and Cu oxides catalyst, Ozone Sci. Eng., 37 (2015) 546–555.
- C. Chen, B.A. Yoza, Y. Wang, P. Wang, Q.X. Li, S. Guo, G. Yan,
Catalytic ozonation of petroleum refinery wastewater utilizing
Mn-Fe-Cu/Al2O3 catalyst, Environ. Sci. Pollut. Res., 22 (2015)
5552–5562.
- Y. Wang, Y. Xie, H. Sun, J. Xiao, H. Cao, S. Wang, 2D/2D Nanohybrids
of γ-MnO₂ on reduced graphene oxide for catalytic
ozonation and coupling peroxymonosulfate activation,
J. Hazard. Mater., 301 (2015) 56–64.
- W.H. Shen, J. Li, X.Q. Chen, S.B. Wu, Z.F. Lin, X.H. Tian,
Advanced treatment process for papermaking wastewater
by composite photoelectrocatalysis and heterogeneous
photocatalysis of nano-TiO2 colloid and its pilot-scale system,
BioResources, 14 (2019) 4454–4472.
- J. Schmitt, H.-C. Flemming, FTIR-spectroscopy in microbial and
material analysis, Int. Biodeterior. Biodegrad., 41 (1998) 1–11.
- W. Wattanathana, N. Nootsuwan, C. Veranitisagul, N. Koonsaeng,
S. Suramitr, A. Laobuthee, Crystallographic, spectroscopic (FTIR/
FT-Raman) and computational (DFT/B3LYP) studies on
4,4'-diethyl-2,2'-[methylazanediylbis(methylene)]diphenol,
J. Mol. Struct., 1109 (2016) 201–208.
- F.J. Chen, W.C. Yu, Y. Qie, L.X. Zhao, H. Zhang, L.H. Guo,
Enhanced photocatalytic removal of hexavalent chromium
through localized electrons in polydopamine-modified TiO2 under visible irradiation, Chem. Eng. J., 373 (2019) 58–67.
- N. Srisasiwimon, S. Chuangchote, N. Laosiripojana, T. Sagawa,
TiO2/lignin-based carbon composited photocatalysts for
enhanced photocatalytic conversion of lignin to high value
chemicals, ACS Sustainable Chem. Eng., 6 (2018) 13968–13976.
- H. Zhang, S. Nie, C. Qin, K. Zhang, S. Wang, Effect of hot
chlorine dioxide delignification on AOX in bagasse pulp
wastewater, Cellulose, 25 (2018) 2037–2049.
- N.B. Parilti, D. Akten, Optimization of TiO2/Fe(III)/solar UV
conditions for the removal of organic contaminants in pulp mill
effluents, Desalination, 265 (2011) 37–42.
- I.J. Ani, U.G. Akpan, M.A. Olutoye, B.H. Hameed, Photocatalytic
degradation of pollutants in petroleum refinery wastewater
by TiO2 and ZnO-based photocatalysts: recent development,
J. Cleaner Prod., 205 (2018) 930–954.
- H. Park, J. Kim, H. Jung, J. Seo, H. Choi, Iron oxide nanoparticleimpregnated
alumina for catalytic ozonation of parachlorobenzoic
acid in aqueous solution, Water Air Soil Pollut.,
225 (2014) 1–9.
- D. Balabanic, M. Filipic, A. Krivograd Klemencic, B. Zegura,
Raw and biologically treated paper mill wastewater effluents
and the recipient surface waters: cytotoxic and genotoxic
activity and the presence of endocrine disrupting compounds,
Sci. Total Environ., 574 (2017) 78–89.
- J. Vittenet, W. Aboussaoud, J. Mendret, J.-S. Pic,
H. Debellefontaine, N. Lesage, K. Faucher, M.-H. Manero,
F. Thibault-Starzyk, H. Leclerc, Catalytic ozonation with
γ-Al2O3 to enhance the degradation of refractory organics in
water, Appl. Catal., A, 504 (2015) 519–532.
- J. Yu, G. Wang, B. Cheng, M. Zhou, Effects of hydrothermal
temperature and time on the photocatalytic activity and
microstructures of bimodal mesoporous TiO2 powders, Appl.
Catal., B, 69 (2007) 171–180.
- M. Kermani, B. Kakavandi, M. Farzadkia, A. Esrafili,
S.F. Jokandan, A. Shahsavani, Catalytic ozonation of high
concentrations of catechol over TiO2@Fe3O4 magnetic core-shell
nanocatalyst: optimization, toxicity and degradation pathway
studies, J. Cleaner Prod., 192 (2018) 597–607.