References

  1. A. Blanco, D. Hermosilla, C. Negro, Wastewater Reuse and Current Challenges: Water Reuse Within the Paper Industry, Springer, Cham, Switzerland, 2015.
  2. R. Sridhar, V. Sivakumar, K. Thirugnanasambandham, Response surface modeling and optimization of upflow anaerobic sludge blanket reactor process parameters for the treatment of bagasse based pulp and paper industry wastewater, Desal. Water Treat., 57 (2015) 1–12.
  3. A. Raj, S. Kumar, I. Haq, S.K. Singh, Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp., Ecol. Eng., 71 (2014) 355–362.
  4. P.C. Lindholm-Lehto, J.S. Knuutinen, H.S.J. Ahkola, S.H. Herve, Refractory organic pollutants and toxicity in pulp and paper mill wastewaters, Environ. Sci. Pollut. Res., 22 (2015) 6473–6499.
  5. S.J. Jahren, J.A. Rintala, H. Ødegaard, Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions, Water. Res., 36 (2002) 1067–1075.
  6. N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, M. Omidinasab, Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate, Chem. Eng. J., 308 (2017) 142–150.
  7. M.A. Hubbe, J.R. Metts, D. Hermosilla, M.A. Blanco, L. Yerushalmi, F. Haghighat, P. Lindholm-Lehto, Z. Khodaparast, M. Kamali, A. Elliott, Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities, BioResources, 11 (2016) 7953–8091.
  8. C. Zhang, J. Chen, Z. Wen, Alternative policy assessment for water RO pollution control in China’s pulp and paper industry, Resour. Conserv. Recycl., 66 (2012) 15–26.
  9. D. Hermosilla, N. Merayo, A. Gascó, Á. Blanco, The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review, Environ. Sci. Pollut. Res., 22 (2015) 168–91.
  10. N. Merayo, D. Hermosilla, L. Blanco, L. Cortijo, Á. Blanco, Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry, J. Hazard. Mater., 262 (2013) 420–427.
  11. N.N. Mahamuni, Y.G. Adewuyi, Advanced oxidation processes (AOPs) involving ultrasound for wastewater treatment: a review with emphasis on cost estimation, Ultrason. Sonochem., 17 (2010) 990–1003.
  12. X. Lü, Q. Zhang, W. Yang, X. Li, L. Zeng, L. Li, Catalytic ozonation of 2, 4-dichlorophenoxyacetic acid over novel Fe-Ni/ AC, RSC Adv., 5 (2015) 10537–10545.
  13. P. Liu, S. He, H. Wei, J. Wang, C. Sun, Characterization of α-Fe2O3/γ-Al2O3 catalysts for catalytic wet peroxide oxidation of m-cresol, Ind. Eng. Chem. Res., 54 (2016) 130–136.
  14. Y. Zhang, Y. Zhao, S. Cao, Z. Yin, L. Wu, Design and synthesis of hierarchical SiO2@C/TiO2 hollow spheres for high performance supercapacitors, ACS Appl. Mater. Interfaces, 9 (2017) 29982–29991.
  15. X.C. Li, W.J. Zheng, G.H. He, R. Zhao, D. Liu, Morphology control of TiO2 nanoparticle in microemulsion and its photocatalytic property, ACS Sustainable Chem. Eng., 2 (2013) 288–295.
  16. C. Adán, A. Bahamonde, M. Fernández-García, A. Martínez-Arias, Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation, Appl. Catal., B, 72 (2007) 11–17.
  17. A. Banisharif, A.A. Khodadadi, Y. Mortazavi, A. Anaraki Firooz, J. Beheshtian, S. Agah, S. Menbari, Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: experimental and computational studies, Appl. Catal., B, 165 (2015) 209–221.
  18. G. Matafonova, V. Batoev, Recent dvances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review, Water Res., 132 (2018) 177–189.
  19. L. Song, X. Zhao, L. Cao, J.W. Moon, B. Gu, W. Wang, Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation, Nanoscale, 7 (2015) 16695–16703.
  20. C. Byrne, L. Moran, D. Hermosilla, N. Merayo, Á. Blanco, S. Rhatigan, S. Hinder, P. Ganguly, M. Nolan, S.C. Pillai, Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: theory and experiments, Appl. Catal., B, 246 (2019) 266–276.
  21. Y. Zhang, H. Zhang, Y. Xu, Y. Wang, Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2, J. Solid State Chem., 177 (2004) 3490–3498.
  22. Y.H. Chen, M. Franzreb, R.H. Lin, L.L. Chen, P.C. Chiang, Platinum-doped TiO2/magnetic poly(methyl methacrylate) microspheres as a novel photocatalyst, Ind. Eng. Chem. Res., 48 (2009) 7616–7623.
  23. M. Trueba, S.P. Trasatti, γ‐alumina as a support for catalysts: a review of fundamental aspects, Eur. J. Inorg. Chem., 17 (2005) 3393–3403.
  24. B. Kasprzyk-Hordern, Chemistry of alumina, reactions in aqueous solution and its application in water treatment, Adv. Colloid Interface Sci., 110 (2004) 19–48.
  25. R. Gracia, S. Cortés, J. Sarasa, P. Ormad, J.L. Ovelleiro, Heterogeneous catalytic ozonation with supported titanium dioxide in model and natural waters, Ozone Sci. Eng., 22 (2000) 461–471.
  26. A.G. Thomas, K.L. Syres, Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces, Chem. Soc. Rev., 41 (2012) 4207–4217.
  27. X.L. Jia, Y. Wang, R.S. Xin, Q.L. Jia, H.J. Zhang, Preparation of rare-earth element doped titanium oxide thin films and photocatalysis properties, Key Eng. Mater., 336–338 (2007) 1946–1948.
  28. Y. Chen, Q. Wu, N.S. Bu, J. Wang, Y.T. Song, Magnetic recyclable lanthanum-nitrogen co-doped titania/strontium ferrite/ diatomite heterojunction composite for enhanced visible-lightdriven photocatalytic activity and recyclability, Chem. Eng. J., 373 (2019) 192–202.
  29. T.G. Deepak, D. Subash, G.S. Anjusree, K.R.N. Pai, S.V. Nair, A.S. Nair, Photovoltaic property of anatase TiO2 3-D mesoflowers, ACS Sustainable Chem. Eng., 2 (2014) 2772–2780.
  30. J. Yoon, E. Shim, S. Bae, H. Joo, Application of immobilized nanotubular TiO2 electrode for photocatalytic hydrogen evolution: reduction of hexavalent chromium (Cr(VI)) in water, J. Hazard. Mater., 161 (2009) 1069–1074.
  31. S. He, J. Li, J. Xu, L. Mo, Enhanced removal of COD and color in paper-making wastewater by ozonation catalyzed by Fe supported on activated carbon, BioResources, 11 (2016) 8396–8404.
  32. J.G. Yu, Y.R. Su, B. Cheng, Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania, Adv. Funct. Mater., 17 (2007) 1984–1990.
  33. M.L. Garcia-Benjume, M.I. Espitia-Cabrera, M.E. Contreras-Garcia, Enhanced photocatalytic activity of hierarchical macromesoporous anatase by ZrO2 incorporation, Int. J. Photoenergy, 2012 (2012) 1–10.
  34. M. Ahmadi, B. Kakavandi, N. Jaafarzadeh, A. Akbar Babaei, Catalytic ozonation of high saline petrochemical wastewater using PAC@FeIIFe2IIIO4: optimization, mechanisms and biodegradability studies, Sep. Purif. Technol., 177 (2017) 293–303.
  35. A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Catalytic ozonation for the removal of organic contaminants in water on alumina, Appl. Catal., B, 165 (2015) 408–418.
  36. S.P. Tong, R. Shi, H. Zhang, C.A. Ma, Kinetics of Fe3O4-CoO/Al2O3 catalytic ozonation of the herbicide 2-(2,4-dichlorophenoxy) propionic acid, J. Hazard. Mater., 185 (2011) 162–167.
  37. J. Lee, S. Lee, S. Yu, D. Rhew, Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC, Environ. Monit. Assess., 188 (2016) 252.
  38. G. Thompson, J. Swain, M. Kay, C.F. Forster, The treatment of pulp and paper mill effluent: a review, Bioresour. Technol., 77 (2001) 275–286.
  39. R. Rosal, M.S. Gonzalo, A. Rodríguez, J.A. Perdigón-Melón, E. García-Calvo, Catalytic ozonation of atrazine and linuron on MnOX/Al2O3 and MnOX/SBA-15 in a fixed bed reactor, Chem. Eng. J., 165 (2010) 806–812.
  40. S. Tong, R. Shi, H. Zhang, C. Ma, Catalytic performance of Fe3O4-CoO/Al2O3 catalyst in ozonation of 2-(2,4-dichlorophenoxy) propionic acid, nitrobenzene and oxalic acid in water, J. Environ. Sci., 22 (2010) 1623–1628.
  41. G. Abdelli, N.K.V. Leitner, Oxidation of cyanuric acid in aqueous solution by catalytic ozonation, Ozone Sci. Eng., 38 (2015) 233–241.
  42. A.A. Aghapour, G. Moussavi, K. Yaghmaeian, Degradation and COD removal of catechol in wastewater using the catalytic ozonation process combined with the cyclic rotating-bed biological reactor, J. Environ. Manage., 157 (2015) 262–266.
  43. Y. Nie, N. Li, C. Hu, Enhanced inhibition of bromate formation in catalytic ozonation of organic pollutants over Fe-Al LDH/Al2O3, Sep. Purif. Technol., 151 (2015) 256–261.
  44. S. He, L. Pengcheng, M. Lihuan, X. Jun, L. Jun, Z. Liqi, Z. Jinsong, Mineralization of recalcitrant organic pollutants in pulp and paper mill wastewaters through ozonation catalyzed by Cu-Ce supported on Al2O3, BioResources, 13 (2018) 3686–3703.
  45. F. Deng, S. Qiu, C. Chen, X. Ding, F. Ma, Heterogeneous catalytic ozonation of refinery wastewater over alumina-supported Mn and Cu oxides catalyst, Ozone Sci. Eng., 37 (2015) 546–555.
  46. C. Chen, B.A. Yoza, Y. Wang, P. Wang, Q.X. Li, S. Guo, G. Yan, Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O3 catalyst, Environ. Sci. Pollut. Res., 22 (2015) 5552–5562.
  47. Y. Wang, Y. Xie, H. Sun, J. Xiao, H. Cao, S. Wang, 2D/2D Nanohybrids of γ-MnO₂ on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation, J. Hazard. Mater., 301 (2015) 56–64.
  48. W.H. Shen, J. Li, X.Q. Chen, S.B. Wu, Z.F. Lin, X.H. Tian, Advanced treatment process for papermaking wastewater by composite photoelectrocatalysis and heterogeneous photocatalysis of nano-TiO2 colloid and its pilot-scale system, BioResources, 14 (2019) 4454–4472.
  49. J. Schmitt, H.-C. Flemming, FTIR-spectroscopy in microbial and material analysis, Int. Biodeterior. Biodegrad., 41 (1998) 1–11.
  50. W. Wattanathana, N. Nootsuwan, C. Veranitisagul, N. Koonsaeng, S. Suramitr, A. Laobuthee, Crystallographic, spectroscopic (FTIR/ FT-Raman) and computational (DFT/B3LYP) studies on 4,4'-diethyl-2,2'-[methylazanediylbis(methylene)]diphenol, J. Mol. Struct., 1109 (2016) 201–208.
  51. F.J. Chen, W.C. Yu, Y. Qie, L.X. Zhao, H. Zhang, L.H. Guo, Enhanced photocatalytic removal of hexavalent chromium through localized electrons in polydopamine-modified TiO2 under visible irradiation, Chem. Eng. J., 373 (2019) 58–67.
  52. N. Srisasiwimon, S. Chuangchote, N. Laosiripojana, T. Sagawa, TiO2/lignin-based carbon composited photocatalysts for enhanced photocatalytic conversion of lignin to high value chemicals, ACS Sustainable Chem. Eng., 6 (2018) 13968–13976.
  53. H. Zhang, S. Nie, C. Qin, K. Zhang, S. Wang, Effect of hot chlorine dioxide delignification on AOX in bagasse pulp wastewater, Cellulose, 25 (2018) 2037–2049.
  54. N.B. Parilti, D. Akten, Optimization of TiO2/Fe(III)/solar UV conditions for the removal of organic contaminants in pulp mill effluents, Desalination, 265 (2011) 37–42.
  55. I.J. Ani, U.G. Akpan, M.A. Olutoye, B.H. Hameed, Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2 and ZnO-based photocatalysts: recent development, J. Cleaner Prod., 205 (2018) 930–954.
  56. H. Park, J. Kim, H. Jung, J. Seo, H. Choi, Iron oxide nanoparticleimpregnated alumina for catalytic ozonation of parachlorobenzoic acid in aqueous solution, Water Air Soil Pollut., 225 (2014) 1–9.
  57. D. Balabanic, M. Filipic, A. Krivograd Klemencic, B. Zegura, Raw and biologically treated paper mill wastewater effluents and the recipient surface waters: cytotoxic and genotoxic activity and the presence of endocrine disrupting compounds, Sci. Total Environ., 574 (2017) 78–89.
  58. J. Vittenet, W. Aboussaoud, J. Mendret, J.-S. Pic, H. Debellefontaine, N. Lesage, K. Faucher, M.-H. Manero, F. Thibault-Starzyk, H. Leclerc, Catalytic ozonation with γ-Al2O3 to enhance the degradation of refractory organics in water, Appl. Catal., A, 504 (2015) 519–532.
  59. J. Yu, G. Wang, B. Cheng, M. Zhou, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Appl. Catal., B, 69 (2007) 171–180.
  60. M. Kermani, B. Kakavandi, M. Farzadkia, A. Esrafili, S.F. Jokandan, A. Shahsavani, Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: optimization, toxicity and degradation pathway studies, J. Cleaner Prod., 192 (2018) 597–607.