References

  1. D. Vilela, M.C. González, A. Escarpa, Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review, Anal. Chim. Acta, 751 (2012) 24–43.
  2. K. An, G.A. Somorjai, Size and shape control of metal nanoparticles for reaction selectivity in catalysis, ChemCatChem, 4 (2012) 1512–1524.
  3. S.M. Hosseinpour-Mashkani, M. Ramezani, Silver and silver oxide nanoparticles: synthesis and characterization by thermal decomposition, Mater. Lett., 130 (2014) 259–262.
  4. J. García-Barrasa, J.M. López-de-Luzuriaga, M. Monge, Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications, Cent. Eur. J. Chem., 9 (2011) 7–19.
  5. R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Y. Estrin, T. Scheper, Electrochemical method for the synthesis of silver nanoparticles, J. Nanopart. Res., 11 (2009) 1193–1200.
  6. H. Peng, A. Yang, J. Xiong, Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium, Carbohydr. Polym., 91 (2013) 348–355.
  7. S. Ahmed, S. Ikram, Synthesis of gold nanoparticles using plant extract: an overview, Nano Res. Appl., 1 (2015) 1–6.
  8. S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, M. Shobiya, Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications, Biomed. Pharmacother., 84 (2016) 1213–1222.
  9. S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Res. Pharmacol. Sci., 9 (2014) 385.
  10. L.J.M. Rao, K. Ramalakshmi, B.B. Borse, B. Raghavan, Antioxidant and radical-scavenging carbazole alkaloids from the oleoresin of curry leaf (Murraya koenigii Spreng.), Food Chem., 100 (2007) 742–747.
  11. F.A. Qais, A. Shafig, H.M. Khan, F.M. Husain, R.A. Khan, B. Alenazi, A. Alsalme, I. Ahmad, Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens, Bioinorg. Chem. Appl., 2019 (2019), doi: 10.1155/2019/4649506.
  12. Y. Wang, H. Sun, Advances and prospects of lasers developed from colloidal semiconductor nanostructures, Prog. Quantum Electron., 60 (2018) 1–29.
  13. M. Rafique, I. Sadaf, M.S. Rafique, M.B. Tahir, A review on green synthesis of silver nanoparticles and their applications, Artif. Cells Nanomed. Biotechnol., 45 (2017) 1272–1291.
  14. S. Kadhem, H. Humud, I.M. Abdulmajeed, Silver nanofluids prepared by pulse exploding wire, 1 (2014) 317–327.
  15. A. Moores, F. Goettmann, The plasmon band in noble metal nanoparticles: an introduction to theory and applications, New J. Chem., 30 (2006) 1121–1132.
  16. G. Guisbiers, Q. Wang, E. Khachatryan, M.J. Arellano-Jimenez, T.J. Webster, P. Larese-Casanova, K.L. Nash, Anti-bacterial selenium nanoparticles produced by UV/VIS/NIR pulsed nanosecond laser ablation in liquids, Laser Phys. Lett., 12 (2014) 16003.
  17. N.V. Tarasenko, A.V. Butsen, E.A. Nevar, Laser-induced modification of metal nanoparticles formed by laser ablation technique in liquids, Appl. Surf. Sci., 247 (2005) 418–422.
  18. J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles, Langmuir, 19 (2003) 1357–1361.
  19. E. Noman, A. Al-Gheethi, B. Talip, R. Mohamed, R.A. Kassim, Inactivating pathogenic bacteria in greywater by biosynthesized Cu/Zn nanoparticles from secondary metabolite of Aspergillus iizukae; optimization, mechanism and techno economic analysis, PloS one, 14 (2019) e0221522.
  20. R. Vijayan, S. Joseph, B. Mathew, Green synthesis, characterization and applications of noble metal nanoparticles using Myxopyrum serratulum AW Hill leaf extract, Bionanoscience, 8 (2018) 105–117.
  21. B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity, Spectrochim. Acta, Part A, 121 (2014) 164–172.
  22. M.R. Bindhu, M. Umadevi, Antibacterial and catalytic activities of green synthesized silver nanoparticles, Spectrochim. Acta, Part A, 135 (2015) 373–378.
  23. K.-S. Lee, M.A. El-Sayed, Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition, J. Phys. Chem. B, 110 (2006) 19220–19225.
  24. R. Sathyavathi, M.B. Krishna, S.V. Rao, R. Saritha, D.N. Rao, Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics, Adv. Sci. Lett., 3 (2010) 138–143.
  25. V. Kumar, S.C. Yadav, S.K. Yadav, Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization, J. Chem. Technol. Biotechnol., 85 (2010) 1301–1309.
  26. D. Philip, C. Unni, S.A. Aromal, V.K. Vidhu, Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles, Spectrochim. Acta, Part A, 78 (2011) 899–904.
  27. Y. Malhotra, M.P. Srivastava, AFM, XRD and optical studies of silver nanostructures fabricated under extreme plasma conditions, J. Phys.: Conf. Ser., 511 (2014) 12072.
  28. B.B. Borse, L.J.M. Rao, K. Ramalakshmi, B. Raghavan, Chemical composition of volatiles from coconut sap (neera) and effect of processing, Food Chem., 101 (2007) 877–880.
  29. C. Baker, A. Pradhan, L. Pakstis, D.J. Pochan, S.I. Shah, Synthesis and antibacterial properties of silver nanoparticles, J. Nanosci. Nanotechnol., 5 (2005) 244–249.