References
- Z.J. Bajić, Z.S. Veličković, V.R. Djokić, A.A. Perić-Grujić,
O. Ersen, P.S. Uskoković, A.D. Marinković, Adsorption study
of arsenic removal by novel hybrid copper impregnated tufa
adsorbents in a batch system, Clean – Soil Air Water, 44 (2016)
1–12.
- Z.S. Veličković, N. Ivanković, V. Striković, R. Karkalić,
D. Jovanović, Z. Bajić, J. Bogdanov, Investigation of soil properties
influence on the heavy metals sorption by plants
and possibilities for prediction of their bioaccumulation by
response surface methodology, J. Serb. Chem. Soc., 81 (2016)
947–958.
- M.K. Uddin, A review on the adsorption of heavy metals by
clay minerals, with special focus on the past decade, Chem.
Eng. J., 308 (2017) 438–462.
- S.S. Gupta, K.G. Bhattacharyya, Immobilization of Pb(II), Cd(II)
and Ni(II) ions on kaolinite and montmorillonite surfaces from
aqueous medium, J. Environ. Manage., 87 (2008) 46–58.
- H. Liu, X. Cai, Y. Wang, J. Chen, Adsorption mechanismbased
screening of cyclodextrin polymers for adsorption and
separation of pesticides from water, Water Res., 45 (2011)
3499–3511.
- M. Rivera-Garza, M.T. Olguõn, I. Garcõa-Sosa, D. Alcantara,
G. Rodrõguez-Fuentes, Silver supported on natural Mexican
zeolite as an antibacterial material, Microporous Mesoporous
Mater., 39 (2000) 431–444.
- WHO, Guidelines for Drinking-water Quality, First addendum
to 3rd ed., Vol. 1, Geneva, World Health Organization, 2006.
- X. Wu, An ion adsorption model related to the change in the
standard chemical potential of adsorption reactions, Adsorpt.
Sci. Technol., 29 (2011) 747–768.
- M. Castro, A. Martinez, A. Gil-Villegas, Modelling adsorption
isotherms of binary mixtures of carbon dioxide, methane and
nitrogen, Adsorpt. Sci. Technol., 29 (2011) 59–70.
- Z.J. Bajić, V.R. Djokić, Z.S. Veličković, M.M. Vuruna,
M.Đ. Ristić, N.B. Issa, A.D. Marinković, Equilibrium, kinetic
and thermodynamic studies on removal of Cd(II), Pb(II) and
As(V) from wastewater using Carp (Cyprinus Carpio) scales,
Dig. J. Nanomater. Bios., 8 (2013) 1581–1590.
- S.K. Myasnikov, A.Y. Tikhonovu, A.P. Chipryakova, N.N. Kulov,
Removal of heavy metal ions from water by a combined
sorption–crystallization process using activated clays, Theor.
Found. Chem. Eng., 50 (2016) 366–382.
- L. Ma, Q. Chen, J. Zhu, Y. Xi, H. He, R. Zhu, Q. Tao, G.A. Ayoko,
Adsorption of phenol and Cu(II) onto cationic and zwitterionic
surfactant modified montmorillonite in single and binary
systems, Chem. Eng. J., 283 (2016) 880–888.
- R. Srinivasan, Advances in application of natural clay and its
composites in removal of biological, organic, and inorganic
contaminants from drinking water, Adv. Mater. Sci. Eng.,
2011 (2011) 1–17, doi.org/10.1155/2011/872531.
- K. Taik-Nam, J. Choong, Adsorption characteristics of sericite
for nickel ions from industrial waste water, J. Ind. Eng. Chem.,
19 (2013) 68–72.
- J.P. Kumar, P.V.R.K. Ramacharyulu, G.K. Prasad, B. Singh,
Montmorillonites supported with metal oxide nanoparticles
for decontamination of sulfur mustard, Appl. Clay Sci., 116–117
(2015) 263–272.
- A. Bée, L. Obeid, R. Mbolantenaina, M. Welschbillig, D. Talbot,
Magnetic chitosan/clay beads: a magsorbent for the removal
of cationic dye from water, J. Magn. Magn. Mater., 421 (2017)
59–64.
- C.A.L. Junior, D.S.A. Silva, A.P.C. Filho, E.F. Lucasc, S.A.A.
Santana, Smectite clay modified with quaternary ammonium as
oil remover, J. Braz. Chem. Soc., 28 (2017) 208–216.
- V. da N. Medeiros, T.C. de Carvalho, E.M. Araújo,
H.L. Lira, A.M.D. Leite, E.A. dos Santos Filho, Polyethersulfone
nanocomposite membranes with different montmorillonite
clays for oil/water separation, Desalin. Water Treat., 154 (2019)
63–71.
- K.G. Bhattacharyya, S.S. Gupta. Adsorption of a few heavy
metals on natural and modified kaolinite and montmorillonite:
a review, Adv. Colloid Interface Sci., 140 (2008) 114–131.
- V. Ramamurthi, P.G. Priya, S. Saranya, C.A. Basha, Recovery of
nickel (II) ions from electroplating rinse water using hectorite
clay, Mod. Appl. Sci., 3 (2009) 37–51.
- W.A. Carvalho, C. Vignado, J. Fontana, Ni(II) removal from
aqueous effluents by silylated clays, J. Hazard. Mater., 153
(2008) 1240–1247.
- M.E. Argun, Use of clinoptilolite for the removal of nickel ions
from water: kinetics and thermodynamics, J. Hazard. Mater.,
150 (2008) 587–595.
- S. Ansanay-Alex, C. Lomenech, C. Hurel, N. Marmier,
Adsorption of nickel and arsenic from aqueous solution on
natural sepiolite, Int. J. Nanotechnol., 9 (2012) 204–215.
- A. Sdiri, T. Higashi, R. Chaabouni, F. Jamoussi, Competitive
removal of heavy metals from aqueous solutions by montmorillonitic
and calcareous clays, Water Air Soil Pollut.,
223 (2012) 1191–1204.
- H. Zhang, Z. Tong, T. Wei, Y. Tang, Removal characteristics
of Zn(II) from aqueous solution by alkaline Ca-bentonite,
Desalination, 276 (2011) 103–108.
- P. Vasconcelos, W. Lima, M. Silva, A. Brito, H. Laborde,
M. Rodrigues, Adsorption of zinc from aqueous solutions
using modified Brazilian gray clay, Am. J. Anal. Chem., 4 (2013)
510–519.
- A.L.P. de-Araujo, M.L. Gimenes, M.A.S.D. de-Barro, M.G.C.
da-Silva, Kinetic and equilibrium study of zinc removal by
brazilian bentonite clay, Mater. Res., 16 (2013) 128–136.
- A. Sdiri, M. Khairy, S. Bouaziz, S. El-Safty, A natural clay
adsorbent for selective removal of lead from aqueous solutions,
Appl. Clay Sci., 126 (2016) 89–97.
- A.A. Taha, M.A. Shreadah, A.M. Ahmed, H.F. Heiba, Multicomponent
adsorption of Pb(II), Cd(II), and Ni(II) onto Egyptian
Na-activated bentonite; equilibrium, kinetics, thermodynamics,
and application for seawater desalination, J. Environ. Chem.
Eng., 4 (2016) 1166–1180.
- W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang, Y.B. Chen,
Antibacterial activity and mechanism of silver nano particles
on Escherichia coli, Appl. Microbiol. Biotechnol., 85 (2010)
1115–1122.
- M.B. Đolić, V.N. Rajaković-Ognjanović, S.B. Štrbac, Z.L. Rakočević,
Đ.N. Veljović, S.I. Dimitrijević, L.V. Rajaković, The
antimicrobial efficiency of silver activated sorbents, Appl. Surf.
Sci., 357 (2015) 819–831.
- X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver
nanoparticles: synthesis, characterization, properties, applications,
and therapeutic approaches - review, Int. J. Mol. Sci.,
17 (2016) pii: E1534.
- K. Taleb, J. Markovski, Z. Veličković, J. Rusmirović, M. Rančić,
V. Pavlović, A. Marinković, Arsenic removal by magnetiteloaded
amino modified nano/microcellulose adsorbents: effect
of functionalization and media size, Arabian J. Chem., 12 (2019)
4675–4693.
- D. Budimirović, Z.S. Veličković, V.R. Djokić, M. Milosavljević, J.
Markovski, S. Lević, A.D. Marinković, Efficient As(V) removal
by Α-FeOOH and Α-FeOOH/Α-MnO2 embedded PEG-6-arm
functionalized multiwall carbon nanotubes, Chem. Eng. Res.
Des., 119 (2017) 75–86.
- Z.S. Veličković, R. Karkalić, Z. Bajić, A. Marinković, A. Nikolić,
P. Otrisal, S. Florus, Cerium supported on high porous carbon
from fish scales carp, as a novel low cost adsorbent to remove
As(V) ions from water, J. Intern. Sci. Pub., 12 (2018) 110–122.
- M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni,
A. Taitai, Use of response surface methodology for optimization
of fluoride adsorption in an aqueous solution by Brushite,
Arabian J. Chem., 10 (2017) S3292–S3302.
- L. Jiang-Jen, D. Rui-Xuan, T. Wei-Cheng, In: D.P. Perez,
High Surface Clay-Supported Silver Nanohybrids, Silver
Nanoparticles, InTech Open, 2010, pp. 161–176.
- K. Shameli, M.B. Ahmad, M. Zargar, W. Md, Z.W. Yunus,
N.A. Ibrahim, Fabrication of silver nanoparticles doped in the
zeolite framework and antibacterial activity, Int. J. Nanomed.,
6 (2011) 331–341.
- N.L. Pacioni, C.D. Borsarelli, V. Rey, A.V. Veglia, Synthetic
Routes for the Preparation of Silver Nanoparticles, Silver
Nanoparticle Applications, Springer International Publishing
Switzerland, 2015, pp. 13–47.
- Z.S. Veličković, A. Marinković, Z. Bajić, J. Marković, A. Perić-
Grujić, P. Uskoković, M. Ristić, Oxidized and ethylenediaminefunctionalized
multi-walled carbon nanotubes for the separation
of low concentration arsenate from water, Sep. Sci.
Technol., 48 (2013) 2047–2058.
- Z.S. Veličković, Z. Bajić, M. Ristić, A. Marinković, M. Vuruna,
Modification of multi-wall carbon nanotubes for the removal of
cadmium, lead and arsenic from wastewater, Dig. J. Nanomater.
Bios., 8 (2013) 501–511.
- K. Shameli, M.B. Ahmad, A. Zamanian, P. Sangpour,
P. Shabanzadeh, Y. Abdollahi, M. Zargar, Green biosynthesis
of silver nanoparticles using Curcuma longatuber powder, Int. J.
Nanomed., 7 (2012) 5603–5610.
- S.E. Cabaniss, Forward modeling of metal complexation by
NOM: II prediction of binding site properties, Environ. Sci.
Technol., 45 (2011) 3202–3209.
- K. Ravichandran, N. Nisha Banu, V.S. Selvi, B. Muralidharan,
T. Arun, Rectification of sulphur deficiency defect in CdS based
films by introducing a novel modification in the SILAR cyclic
process, J. Alloys Compd., 687 (2016) 402–412.
- A. Shah, Latif-ur-Rahman, R. Qureshi, Zia-ur-Rehman,
Synthesis, characterization and applications of bimetallic (Au-
Ag, Au-Pt, Au-Ru) alloy nanoparticles, Rev. Adv. Mater. Sci., 30
(2012) 133–149.
- G.D. Vuković, A.D. Marinković, M. Čolić, M.Ð. Ristić, R. Aleksić,
A.A. Perić-Grujić, P.S. Uskoković, Removal of cadmium
from aqueous solutions by oxidized and ethylenediaminefunctionalized
multiwalled carbon nanotubes, Chem. Eng. J.,
157 (2010) 238–248.
- M.R. Soares, J.C. Casagrande, E.R. Mouta, Nickel adsorption by
variable charge soils: effect of pH and ionic strength, Braz. Arch.
Biol. Technol., 54 (2011) 207–220.
- H. Qiu, L. Lv, B.C. Pan, Q.J. Zhang, W.M. Zhang, Q.X. Zhang,
Critical review in adsorption kinetic models, J. Zhejiang Univ.-
Sci. A., 10 (2009) 716–724.
- R.M.C. Viegas, M. Campinas, H. Costa, M.J. Rosa, How do the
HSDM and Boyd’s model compare for estimating intraparticle
diffusion coefficients in adsorption processes, Adsorption,
20 (2014) 737–746.
- Z.S. Veličković, G.D. Vuković, A.D. Marinković, M.S. Moldovan,
A.A. Perić-Grujić, P.S. Uskoković, M.Ð. Ristić, Adsorption
of arsenate on iron(III) oxide coated ethylenediamine functionalized
multiwall carbon nanotubes, Chem. Eng. J., 181–182
(2012) 174–181.
- Q. Wang, D. Zhang, S. Tian, P. Ning, Simultaneous adsorptive
removal of methylene blue and copper ions from aqueous
solution by ferrocene-modified cation exchange resin, J. Appl.
Polym. Sci., 131 (2014), doi: 10.1002/app.41029.
- R. Selvakumar, N. Arul Jothi, V. Jayavignesh, K. Karthikaiselvi,
G.I. Antony, P.R. Sharmila, S. Kavitha, K. Swaminathan,
As(V) removal using carbonized yeast cells containing silver
nanoparticles, Water. Res., 45 (2011) 583–592.
- K. Taleb, J. Markovski, M. Milosavljević, M. Marinović-Cincović,
J. Rusmirović, M. Ristić, A. Marinković, Efficient arsenic
removal by cross-linked macroporous polymer impregnated
with hydrous iron oxide: material performance, Chem. Eng. J.,
279 (2015) 66–78.
- J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati,
S. Ismadji, Equilibrium and kinetic studies in adsorption of
heavy metals using biosorbent: a summary of recent studies,
J. Hazard. Mater., 162 (2009) 616–645.
- I.A. Shabtai, Y.G. Mishael, Catalytic polymer-clay composite
for enhanced removal and degradation of diazinon, J. Hazard.
Mater., 335 (2017) 135–142.
- B. Xu, G. Gonella, B.G. DeLacy, H.L. Dai, Adsorption of anionic
thiols on silver nanoparticles, J. Phys. Chem. C, 119 (2015)
5454–5461.
- M.B. Ibrahim, S. Sani, Comparative isotherms studies
on adsorptive removal of congo red from wastewater by
watermelon rinds and neem-tree leaves, Open J. Phys. Chem.,
4 (2014) 139–146.
- US Environmental Protection Agency, Ambient Water Quality
Criteria for Silver, Washington, D.C., 1980 (EPA 440/5-80-071).
- Y.-T. Woo, D. Lai, J.L. McLain, M.K. Manibusan, V. Dellarco, Use
of mechanism-based structure-activity relationships analysis in
carcinogenic potential ranking for drinking water disinfection
by-products, Environ. Health Perspect., 110 (2002) (Suppl. 1,
75–88).
- S.P. Deshmukh, S.M. Patil, S.B. Mullani, S.D. Delekar, Silver
nanoparticles as an effective disinfectant: a review, Mater. Sci.
Eng., C, 97 (2019) 954–965.
- C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial
effects of silver nanomaterials and potential implications for
human health and the environment, J. Nanopart. Res., 12 (2010)
1531–1551.
- E.E. Elemike, D.C. Onwudiwe, A.C. Ekennia, C.U. Sonde, R.C.
Ehiri, Green synthesis of Ag/Ag2O nanoparticles using aqueous
leaf extract of Eupatorium odoratum and its antimicrobial and
mosquito larvicidal activities, Molecules, 22 (2017) 674–689.
- C. Carlson, S.M. Hussain, A.M.K. Schrand, L. Braydich-Stolle,
K.L. Hess, R.L. Jones, Unique cellular interaction of silver
nanoparticles: size-dependent generation of reactive oxygen
species, J. Phys. Chem. B, 112 (2008) 13608–13619.
- Z.-M. Xiu, Q.-B. Zhang, H.L. Puppala, V.L. Colvin, P.J.J. Alvarez,
Negligible particle-specific antibacterial activity of silver
nanoparticles, Nano Lett., 12 (2012) 4271−4275.
- Guidelines for Drinking-water Quality, 2nd ed., Vol. 2., Health
Criteria and Other Supporting Information, World Health
Organization, Geneva, 1996. Available at: www.WQA.ORG.
- H. Ortiz-Ibarra, N. Casillas, V. Soto, M. Barcena-Soto, R. Torres-
Vitela, W. de la Cruz, S. Gomez-Salazar, Surface characterization
of electrodeposited silver on activated carbon for bactericidal
purposes, J. Colloid Interface Sci., 314 (2007) 562–571.
- F.-R.F. Fan, A.J. Bard, Chemical, electrochemical, gravimetric,
and microscopic studies on antimicrobial silver films, J. Phys.
Chem. B, 106 (2002) 279–287.