References

  1. Z.J. Bajić, Z.S. Veličković, V.R. Djokić, A.A. Perić-Grujić, O. Ersen, P.S. Uskoković, A.D. Marinković, Adsorption study of arsenic removal by novel hybrid copper impregnated tufa adsorbents in a batch system, Clean – Soil Air Water, 44 (2016) 1–12.
  2. Z.S. Veličković, N. Ivanković, V. Striković, R. Karkalić, D. Jovanović, Z. Bajić, J. Bogdanov, Investigation of soil properties influence on the heavy metals sorption by plants and possibilities for prediction of their bioaccumulation by response surface methodology, J. Serb. Chem. Soc., 81 (2016) 947–958.
  3. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2017) 438–462.
  4. S.S. Gupta, K.G. Bhattacharyya, Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium, J. Environ. Manage., 87 (2008) 46–58.
  5. H. Liu, X. Cai, Y. Wang, J. Chen, Adsorption mechanismbased screening of cyclodextrin polymers for adsorption and separation of pesticides from water, Water Res., 45 (2011) 3499–3511.
  6. M. Rivera-Garza, M.T. Olguõn, I. Garcõa-Sosa, D. Alcantara, G. Rodrõguez-Fuentes, Silver supported on natural Mexican zeolite as an antibacterial material, Microporous Mesoporous Mater., 39 (2000) 431–444.
  7. WHO, Guidelines for Drinking-water Quality, First addendum to 3rd ed., Vol. 1, Geneva, World Health Organization, 2006.
  8. X. Wu, An ion adsorption model related to the change in the standard chemical potential of adsorption reactions, Adsorpt. Sci. Technol., 29 (2011) 747–768.
  9. M. Castro, A. Martinez, A. Gil-Villegas, Modelling adsorption isotherms of binary mixtures of carbon dioxide, methane and nitrogen, Adsorpt. Sci. Technol., 29 (2011) 59–70.
  10. Z.J. Bajić, V.R. Djokić, Z.S. Veličković, M.M. Vuruna, M.Đ. Ristić, N.B. Issa, A.D. Marinković, Equilibrium, kinetic and thermodynamic studies on removal of Cd(II), Pb(II) and As(V) from wastewater using Carp (Cyprinus Carpio) scales, Dig. J. Nanomater. Bios., 8 (2013) 1581–1590.
  11. S.K. Myasnikov, A.Y. Tikhonovu, A.P. Chipryakova, N.N. Kulov, Removal of heavy metal ions from water by a combined sorption–crystallization process using activated clays, Theor. Found. Chem. Eng., 50 (2016) 366–382.
  12. L. Ma, Q. Chen, J. Zhu, Y. Xi, H. He, R. Zhu, Q. Tao, G.A. Ayoko, Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems, Chem. Eng. J., 283 (2016) 880–888.
  13. R. Srinivasan, Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water, Adv. Mater. Sci. Eng., 2011 (2011) 1–17, doi.org/10.1155/2011/872531.
  14. K. Taik-Nam, J. Choong, Adsorption characteristics of sericite for nickel ions from industrial waste water, J. Ind. Eng. Chem., 19 (2013) 68–72.
  15. J.P. Kumar, P.V.R.K. Ramacharyulu, G.K. Prasad, B. Singh, Montmorillonites supported with metal oxide nanoparticles for decontamination of sulfur mustard, Appl. Clay Sci., 116–117 (2015) 263–272.
  16. A. Bée, L. Obeid, R. Mbolantenaina, M. Welschbillig, D. Talbot, Magnetic chitosan/clay beads: a magsorbent for the removal of cationic dye from water, J. Magn. Magn. Mater., 421 (2017) 59–64.
  17. C.A.L. Junior, D.S.A. Silva, A.P.C. Filho, E.F. Lucasc, S.A.A. Santana, Smectite clay modified with quaternary ammonium as oil remover, J. Braz. Chem. Soc., 28 (2017) 208–216.
  18. V. da N. Medeiros, T.C. de Carvalho, E.M. Araújo, H.L. Lira, A.M.D. Leite, E.A. dos Santos Filho, Polyethersulfone nanocomposite membranes with different montmorillonite clays for oil/water separation, Desalin. Water Treat., 154 (2019) 63–71.
  19. K.G. Bhattacharyya, S.S. Gupta. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review, Adv. Colloid Interface Sci., 140 (2008) 114–131.
  20. V. Ramamurthi, P.G. Priya, S. Saranya, C.A. Basha, Recovery of nickel (II) ions from electroplating rinse water using hectorite clay, Mod. Appl. Sci., 3 (2009) 37–51.
  21. W.A. Carvalho, C. Vignado, J. Fontana, Ni(II) removal from aqueous effluents by silylated clays, J. Hazard. Mater., 153 (2008) 1240–1247.
  22. M.E. Argun, Use of clinoptilolite for the removal of nickel ions from water: kinetics and thermodynamics, J. Hazard. Mater., 150 (2008) 587–595.
  23. S. Ansanay-Alex, C. Lomenech, C. Hurel, N. Marmier, Adsorption of nickel and arsenic from aqueous solution on natural sepiolite, Int. J. Nanotechnol., 9 (2012) 204–215.
  24. A. Sdiri, T. Higashi, R. Chaabouni, F. Jamoussi, Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays, Water Air Soil Pollut., 223 (2012) 1191–1204.
  25. H. Zhang, Z. Tong, T. Wei, Y. Tang, Removal characteristics of Zn(II) from aqueous solution by alkaline Ca-bentonite, Desalination, 276 (2011) 103–108.
  26. P. Vasconcelos, W. Lima, M. Silva, A. Brito, H. Laborde, M. Rodrigues, Adsorption of zinc from aqueous solutions using modified Brazilian gray clay, Am. J. Anal. Chem., 4 (2013) 510–519.
  27. A.L.P. de-Araujo, M.L. Gimenes, M.A.S.D. de-Barro, M.G.C. da-Silva, Kinetic and equilibrium study of zinc removal by brazilian bentonite clay, Mater. Res., 16 (2013) 128–136.
  28. A. Sdiri, M. Khairy, S. Bouaziz, S. El-Safty, A natural clay adsorbent for selective removal of lead from aqueous solutions, Appl. Clay Sci., 126 (2016) 89–97.
  29. A.A. Taha, M.A. Shreadah, A.M. Ahmed, H.F. Heiba, Multicomponent adsorption of Pb(II), Cd(II), and Ni(II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination, J. Environ. Chem. Eng., 4 (2016) 1166–1180.
  30. W.R. Li, X.B. Xie, Q.S. Shi, H.Y. Zeng, Y.S. Ou-Yang, Y.B. Chen, Antibacterial activity and mechanism of silver nano particles on Escherichia coli, Appl. Microbiol. Biotechnol., 85 (2010) 1115–1122.
  31. M.B. Đolić, V.N. Rajaković-Ognjanović, S.B. Štrbac, Z.L. Rakočević, Đ.N. Veljović, S.I. Dimitrijević, L.V. Rajaković, The antimicrobial efficiency of silver activated sorbents, Appl. Surf. Sci., 357 (2015) 819–831.
  32. X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches - review, Int. J. Mol. Sci., 17 (2016) pii: E1534.
  33. K. Taleb, J. Markovski, Z. Veličković, J. Rusmirović, M. Rančić, V. Pavlović, A. Marinković, Arsenic removal by magnetiteloaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size, Arabian J. Chem., 12 (2019) 4675–4693.
  34. D. Budimirović, Z.S. Veličković, V.R. Djokić, M. Milosavljević, J. Markovski, S. Lević, A.D. Marinković, Efficient As(V) removal by Α-FeOOH and Α-FeOOH/Α-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes, Chem. Eng. Res. Des., 119 (2017) 75–86.
  35. Z.S. Veličković, R. Karkalić, Z. Bajić, A. Marinković, A. Nikolić, P. Otrisal, S. Florus, Cerium supported on high porous carbon from fish scales carp, as a novel low cost adsorbent to remove As(V) ions from water, J. Intern. Sci. Pub., 12 (2018) 110–122.
  36. M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, A. Taitai, Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite, Arabian J. Chem., 10 (2017) S3292–S3302.
  37. L. Jiang-Jen, D. Rui-Xuan, T. Wei-Cheng, In: D.P. Perez, High Surface Clay-Supported Silver Nanohybrids, Silver Nanoparticles, InTech Open, 2010, pp. 161–176.
  38. K. Shameli, M.B. Ahmad, M. Zargar, W. Md, Z.W. Yunus, N.A. Ibrahim, Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity, Int. J. Nanomed., 6 (2011) 331–341.
  39. N.L. Pacioni, C.D. Borsarelli, V. Rey, A.V. Veglia, Synthetic Routes for the Preparation of Silver Nanoparticles, Silver Nanoparticle Applications, Springer International Publishing Switzerland, 2015, pp. 13–47.
  40. Z.S. Veličković, A. Marinković, Z. Bajić, J. Marković, A. Perić- Grujić, P. Uskoković, M. Ristić, Oxidized and ethylenediaminefunctionalized multi-walled carbon nanotubes for the separation of low concentration arsenate from water, Sep. Sci. Technol., 48 (2013) 2047–2058.
  41. Z.S. Veličković, Z. Bajić, M. Ristić, A. Marinković, M. Vuruna, Modification of multi-wall carbon nanotubes for the removal of cadmium, lead and arsenic from wastewater, Dig. J. Nanomater. Bios., 8 (2013) 501–511.
  42. K. Shameli, M.B. Ahmad, A. Zamanian, P. Sangpour, P. Shabanzadeh, Y. Abdollahi, M. Zargar, Green biosynthesis of silver nanoparticles using Curcuma longatuber powder, Int. J. Nanomed., 7 (2012) 5603–5610.
  43. S.E. Cabaniss, Forward modeling of metal complexation by NOM: II prediction of binding site properties, Environ. Sci. Technol., 45 (2011) 3202–3209.
  44. K. Ravichandran, N. Nisha Banu, V.S. Selvi, B. Muralidharan, T. Arun, Rectification of sulphur deficiency defect in CdS based films by introducing a novel modification in the SILAR cyclic process, J. Alloys Compd., 687 (2016) 402–412.
  45. A. Shah, Latif-ur-Rahman, R. Qureshi, Zia-ur-Rehman, Synthesis, characterization and applications of bimetallic (Au- Ag, Au-Pt, Au-Ru) alloy nanoparticles, Rev. Adv. Mater. Sci., 30 (2012) 133–149.
  46. G.D. Vuković, A.D. Marinković, M. Čolić, M.Ð. Ristić, R. Aleksić, A.A. Perić-Grujić, P.S. Uskoković, Removal of cadmium from aqueous solutions by oxidized and ethylenediaminefunctionalized multiwalled carbon nanotubes, Chem. Eng. J., 157 (2010) 238–248.
  47. M.R. Soares, J.C. Casagrande, E.R. Mouta, Nickel adsorption by variable charge soils: effect of pH and ionic strength, Braz. Arch. Biol. Technol., 54 (2011) 207–220.
  48. H. Qiu, L. Lv, B.C. Pan, Q.J. Zhang, W.M. Zhang, Q.X. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ.- Sci. A., 10 (2009) 716–724.
  49. R.M.C. Viegas, M. Campinas, H. Costa, M.J. Rosa, How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes, Adsorption, 20 (2014) 737–746.
  50. Z.S. Veličković, G.D. Vuković, A.D. Marinković, M.S. Moldovan, A.A. Perić-Grujić, P.S. Uskoković, M.Ð. Ristić, Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes, Chem. Eng. J., 181–182 (2012) 174–181.
  51. Q. Wang, D. Zhang, S. Tian, P. Ning, Simultaneous adsorptive removal of methylene blue and copper ions from aqueous solution by ferrocene-modified cation exchange resin, J. Appl. Polym. Sci., 131 (2014), doi: 10.1002/app.41029.
  52. R. Selvakumar, N. Arul Jothi, V. Jayavignesh, K. Karthikaiselvi, G.I. Antony, P.R. Sharmila, S. Kavitha, K. Swaminathan, As(V) removal using carbonized yeast cells containing silver nanoparticles, Water. Res., 45 (2011) 583–592.
  53. K. Taleb, J. Markovski, M. Milosavljević, M. Marinović-Cincović, J. Rusmirović, M. Ristić, A. Marinković, Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: material performance, Chem. Eng. J., 279 (2015) 66–78.
  54. J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater., 162 (2009) 616–645.
  55. I.A. Shabtai, Y.G. Mishael, Catalytic polymer-clay composite for enhanced removal and degradation of diazinon, J. Hazard. Mater., 335 (2017) 135–142.
  56. B. Xu, G. Gonella, B.G. DeLacy, H.L. Dai, Adsorption of anionic thiols on silver nanoparticles, J. Phys. Chem. C, 119 (2015) 5454–5461.
  57. M.B. Ibrahim, S. Sani, Comparative isotherms studies on adsorptive removal of congo red from wastewater by watermelon rinds and neem-tree leaves, Open J. Phys. Chem., 4 (2014) 139–146.
  58. US Environmental Protection Agency, Ambient Water Quality Criteria for Silver, Washington, D.C., 1980 (EPA 440/5-80-071).
  59. Y.-T. Woo, D. Lai, J.L. McLain, M.K. Manibusan, V. Dellarco, Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products, Environ. Health Perspect., 110 (2002) (Suppl. 1, 75–88).
  60. S.P. Deshmukh, S.M. Patil, S.B. Mullani, S.D. Delekar, Silver nanoparticles as an effective disinfectant: a review, Mater. Sci. Eng., C, 97 (2019) 954–965.
  61. C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res., 12 (2010) 1531–1551.
  62. E.E. Elemike, D.C. Onwudiwe, A.C. Ekennia, C.U. Sonde, R.C. Ehiri, Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activities, Molecules, 22 (2017) 674–689.
  63. C. Carlson, S.M. Hussain, A.M.K. Schrand, L. Braydich-Stolle, K.L. Hess, R.L. Jones, Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species, J. Phys. Chem. B, 112 (2008) 13608–13619.
  64. Z.-M. Xiu, Q.-B. Zhang, H.L. Puppala, V.L. Colvin, P.J.J. Alvarez, Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett., 12 (2012) 4271−4275.
  65. Guidelines for Drinking-water Quality, 2nd ed., Vol. 2., Health Criteria and Other Supporting Information, World Health Organization, Geneva, 1996. Available at: www.WQA.ORG.
  66. H. Ortiz-Ibarra, N. Casillas, V. Soto, M. Barcena-Soto, R. Torres- Vitela, W. de la Cruz, S. Gomez-Salazar, Surface characterization of electrodeposited silver on activated carbon for bactericidal purposes, J. Colloid Interface Sci., 314 (2007) 562–571.
  67. F.-R.F. Fan, A.J. Bard, Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films, J. Phys. Chem. B, 106 (2002) 279–287.