References

  1. J. Morillo, J. Usero, D. Rosado, H. Bakouri, A. Riaza, F.-J. Bernaola, Comparative study of brine management technologies for desalination plants, Desalination, 336 (2014) 32–49.
  2. H.J. Krishna, Introduction to Desalination Technologies, Texas Water Development Board, United States, 2003. Available at: https://vdocuments.net/introduction-to-desalination-techno logies-introduction-to-desalination-technologies.html.
  3. M. Sulekha, Nanotechnology for waste water treatment, Int. J. Chem. Stud., 4 (2016) 22–24.
  4. S.O. Obare, G.J. Meyer, Nanostructured materials for environmental remediation of organic contaminants in water, J. Environ. Sci. Health., Part A, 39 (2004) 2549–2582.
  5. A. Giwa, V. Dufour, F. Al Marzooqi, M. Al Kaabi, S.W. Hasan, Brine management methods: recent innovations and current status, Desalination, 407 (2017) 1–23.
  6. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water environment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  7. A.N. Mabrouk, H.E.S. Fath, Technoeconomic study of a novel integrated thermal MSF–MED desalination technology, Desalination, 371 (2015) 115–125.
  8. Advanced Water Technology Center (AWTC), Electrodialysis and Electrodialysis Reversal, Colorado School of Mines, Colorado USA 80401-1887, 2016. Available at: http://aqwatec. mines.edu.
  9. H.K. Shon, S. Phuntsho, D.S. Chaudhary, S. Vigneswaran, J. Cho, Nano filtration for water and wastewater treatment – a mini review, Drinking Water Eng. Sci., 6 (2013) 47–53.
  10. A.E. Al-Rawajfeh, S. Ihm, H. Varshney, A.N. Mabrouk, Scale formation model for high top brine temperature multi stage flash (MSF) desalination plants, Desalination, 350 (2014) 53–60.
  11. J.Y. Han, Molecular sieving using nanofilters: past, present and future, Lab. Chip, 8 (2008) 23–33.
  12. A. Kumar, A. Gayakwad, B.D. Nagale, A review: nano membrane and application, Int. J. Innovative Res. Sci. Eng. Technol., 3 (2014) 8373–8381.
  13. P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art, Ind. Eng. Chem. Res., 48 (2009) 4638–4663.
  14. M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4 (2011) 1946–1971.
  15. A.S. Al-Hobaib, Kh.M. Al-Sheetan, M.R. Shaik, M.S. Al-Suhybani, Modification of thin-film polyamide membrane with multiwalled carbon nanotubes by interfacial polymerization, Appl. Water Sci., 7 (2017) 4341–4350.
  16. A. Street, R. Sustich, J. Duncan, N. Savage, W. Andrew, Nanotechnology Applications for Clean Water: Solutions for Improving Water Quality, 2nd ed., Elsevier, United States, eBook, 2014.
  17. J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang, Y. Zhang, X. Li, Sh. Yuan, J. Li, M. Tian, J. Lin, B.V. Bruggen, Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration, ACS Appl. Mater. Interfaces, 9 (2017) 1975–1986.
  18. C. Feng, K.C. Khulbe, T. Matsuura, R. Farnood, A.F. Ismail, Recent progress in zeolite/zeotype membranes: review paper. Advanced Membrane Technology Center (AMTEC), J. Membr. Sci. Res., 1 (2015) 49–72.
  19. E.E. McLeary, J.C. Jansen, F. Kapteijn, Zeolite based films, membranes and membrane reactors: progress and prospects, Microporous Mesoporous Mater., 90 (2006) 198–220.
  20. E. Hoek, A. Jawor, Nano-Filtration Separations, Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker Inc., New York, 2002.
  21. Z.A. Qiao, Q.S. Huo, Synthetic Chemistry of the Inorganic Ordered Porous Materials, Chapter 15, “Go to Modern Inorganic Synthetic Chemistry on ScienceDirect” Modern Inorganic Synthetic Chemistry (Second Edition), Elsevier, Jilin University, Changchun, China, 2017, pp. 389–428.
  22. S. Thomas, R. Shanks, S. Chandran, W. Andrew, Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems, 1st ed., Elsevier, eBook , 2015.
  23. M. Kazemimoghadam, New nanopore zeolite membranes for water treatment, Desalination, 251 (2010) 176–180.
  24. V. Abetz, Isoporous Block Copolymer Membranes, Institute of Physical Chemistry, University of Hamburg, Grindelallee, 2015.
  25. Ch.W. Kim, N.H. Heo, K. Seff, Framework sites preferred by aluminum in zeolite ZSM-5. structure of a fully dehydrated, fully Cs+-exchanged ZSM-5 crystal (MFI, Si/Al = 24), J. Phys. Chem. C, 115 (2011) 24823–24838.
  26. A. Huang, Y.S. Lin, W. Yang, Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding, J. Membr. Sci., 245 (2004) 41–51.
  27. M. Kazemimoghadam, T. Mohammadi, Synthesis of MFI zeolite membranes for water desalination, Desalination, 206 (2007) 547–553.
  28. R. Das, M.E. Ali, Sh.B. AbdHamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination, 336 (2014) 97–109.
  29. H. Li, L. Zou, Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination, Desalination, 275 (2011) 62–66.
  30. L. Joseph, J. Heo, Y.G. Park, J.R. Flora, Y. Yoon, Adsorption of bisphenol A and 17α-ethinyl estradiol on singlewalled carbon nanotubes from seawater and brackish water, Desalination, 281 (2011) 68–74.
  31. B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B, 112 (2008) 1427–1434.
  32. Y. Li, T. Chung, S. Kulprathipanja, Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity, AIChE J., 53 (2007) 610–616.
  33. M. Majumder, B. Corry, Anomalous decline of water transport in covalently modified carbon nanotube membranes, Chem. Commun., 47 (2011) 7683–7685.
  34. E.V. Hooijdonk, C. Bittencourt, R. Snyders, J.F. Colomer, Functionalization of vertically aligned carbon nanotubes, Beilstein Int. J. Nanotechnol., 4 (2013) 129–152.
  35. L. Li, J. Dong, T. Nenoff, R. Lee, Desalination by reverse osmosis using MFI zeolite membranes, J. Membr. Sci., 243 (2004) 401–404.
  36. L. Li, J. Dong, T. Nenoff, Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis, Sep. Purif. Technol., 53 (2007) 42–48.
  37. M. Duke, J. O’Brien-Abraham, N. Milne, B. Zhu, J. Lin, J. Diniz da Costa, Seawater desalination performance of MFI type membranes made by secondary growth, Sep. Purif. Technol., 68 (2009) 343–350.
  38. J. Mo, S.H. Son, J. Jegal, J. Kim, Y.H. Lee, Preparation and characterization of polyamide nanofiltration composite membranes with TiO2 layers chemically connected to the membrane surface, J. Appl. Polym. Sci., 105 (2007) 1267–1274.
  39. H.J. Kim, K. Choi, Y. Baek, D.-G. Kim, J. Shim, J. Yoon, J.-Ch. Lee, High performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl. Mater. Interfaces, 6 (2014) 2819–2829.
  40. M. Noack, P. Kölsch, V. Seefeld, P. Toussaint, G. Georgi, J. Caro, Influence of the Si/Al-ratio on the permeation properties of MFI-membranes, Microporous Mesoporous Mater., 79 (2005) 329–337.
  41. N. Liu, L. Li, B. McPherson, R. Lee, Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes, J. Membr. Sci., 325 (2008) 357–361.
  42. I. Kumakiri, T. Yamaguchi, S. Nakao, Application of a Zeolite A membrane to reverse osmosis process, J. Chem. Eng. Jpn., 33 (2000) 333–336.
  43. V. Augugliaro, C. Baiocchi, A. Bianco Prevot, E. García- López, V. Loddo, S. Malato, G. Marcí, L. Palmisano, M. Pazzi, E. Pramauro, Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation, Chemosphere, 49 (2002) 1223–1230.
  44. B.H. Jeong, E.M.V. Hoek, Y.S. Yan, A. Subramani, X.F. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes, J. Membr. Sci., 294 (2007) 1–7.
  45. H.S. Lee, S.J. Im, J.H. Kim, H.J. Kim, J.P. Kim, B.R. Min, Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination, 219 (2008) 48–56.
  46. N. Ghaffour, Th. M. Missimer, G.L. Amy,Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  47. Y. Lin, M. Meziani, Y. Sun, Functionalized carbon nanotubes for polymeric nanocomposites, J. Mater. Chem., 17 (2007) 1143–1148.
  48. V. Krishna, S. Pumprueg, S.H. Lee, J. Zhao, W. Sigmund, B. Koopman, B.M. Moudgil, Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes, Process Saf. Environ., 83 (2007) 393–397.
  49. H. Choi, E. Stathatos, D. Dionysiou, Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications, Appl. Catal., B, 63 (2006) 60–67.
  50. L. Brunet, D.Y. Lyon, E.M. Hotze, P.J.J. Alvarez, M.R. Wiesner, Comparative photoactivity and antibacterial properties of C-60 fullerenes and titanium dioxide nanoparticles, Environ. Sci. Technol., 43 (2009) 4355–4360.
  51. A.S. Brady-Estevez, S. Kang, M. Elimelech, A single-walled carbon-nanotube filter for removal of viral and bacterial pathogens, Small, 4 (2008) 481–484.
  52. A. Dove, Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures, Chem. Commun., 48 (2008) 6446–6470.