References

  1. T.J. Gallegos, B.A. Varela, S.S. Haines, M.A. Engle, Hydraulic fracturing water use variability in the United States and potential environmental implications, Water Resour. Res., 51 (2015) 5839–5845.
  2. D.J. Miller, X. Huang, H. Li, S. Kasemset, A. Lee, D. Agnihotri, T. Hayes, D.R. Paul, B.D. Freeman, Fouling-resistant membranes for the treatment of flowback water from hydraulic shale fracturing: a pilot study, J. Membr. Sci., 437 (2013) 265–275.
  3. C.T. Montgomery, M.B. Smith, Hydraulic fracturing: history of an enduring technology, J. Pet. Technol., 62 (2010) 26–40.
  4. S. Rassenfoss, From flowback to fracturing: water recycling grows in the Marcellus Shale, J. Pet. Technol., 63 (2011) 48–51.
  5. M.C. Brittingham, K.O. Maloney, A.M. Farag, D.D. Harper, Z.H. Bowen, Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats, Environ. Sci. Technol., 48 (2014) 11034–11047.
  6. A.J. Kondash, E. Albright, A. Vengosh, Quantity of flowback and produced waters from unconventional oil and gas exploration, Sci. Total Environ., 574 (2017) 314–321.
  7. A. Altaee, N. Hilal, Dual-stage forward osmosis/pressure retarded osmosis process for hypersaline solutions and fracking wastewater treatment, Desalination, 350 (2014) 79–85.
  8. J.P. Nicot, B.R. Scanlon, R.C. Reedy, R.A. Costley, Source and fate of hydraulic fracturing water in the Barnett Shale: a historical perspective, Environ. Sci. Technol., 48 (2014) 2464–2471.
  9. J.M. Estrada, B. Rao, A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing, Fuel, 182 (2016) 292–303.
  10. E.E. Yost, J. Stanek, R.S. Dewoskin, L.D. Burgoon, Overview of chronic oral toxicity values for chemicals present in hydraulic fracturing fluids, flowback, and produced waters, Environ. Sci. Technol., 50 (2016) 4788–4797.
  11. G.A. Lutzu, N.T. Dunford, Algal treatment of wastewater generated during oil and gas production using hydraulic fracturing technology, Environ. Technol., 40 (2019) 1027–1034.
  12. N.R. Mullins, A.J. Daugulis, The biological treatment of synthetic fracking fluid in an extractive membrane bioreactor: selective transport and biodegradation of hydrophobic and hydrophilic contaminants, J. Hazard. Mater., 371 (2019) 734–742.
  13. B. Akyon, D. Lipus, K. Bibby, Glutaraldehyde inhibits biological treatment of organic additives in hydraulic fracturing produced water, Sci. Total Environ., 666 (2019) 1161–1168.
  14. A. Butkovskyi, A.H. Faber, Y. Wang, K. Grolle, R. Hofman-Caris, H. Bruning, A.P. Van Wezel, H.H. Rijnaarts, Removal of organic compounds from shale gas flowback water, Water Res., 138 (2018) 47–55.
  15. D. García, E. Posadas, S. Blanco, G. Acién, P. García-Encina, S. Bolado, R. Muñoz, Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors, Bioresour. Technol., 248 (2018) 120–126.
  16. Q. Wang, W. Jin, X. Zhou, S. Guo, S.H. Gao, C. Chen, R. Tu, S.F. Han, J. Jiang, X. Feng, Growth enhancement of biodieselpromising microalga Chlorella pyrenoidosa in municipal wastewater by polyphosphate-accumulating organisms, J. Cleaner Prod., 240 (2019) 118148.
  17. P. Foladori, S. Petrini, G. Andreottola, Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters, Chem. Eng. J., 345 (2018) 507–516.
  18. R.H. Wijffels, M.J. Barbosa, An outlook on microalgal biofuels, Science, 329 (2010) 796–799.
  19. R. Li, J. Yang, J. Pan, L. Zhang, W. Qin, Effect of immobilization on growth and organics removal of Chlorella in fracturing flowback fluids treatment, J. Environ. Manage., 226 (2018) 163–168.
  20. A.M. Hammed, S.K. Prajapati, S. Simsek, H. Simsek, Growth regime and environmental remediation of microalgae, Algae, 31 (2016) 189–204.
  21. L. Liu, Y. Zhao, X. Jiang, X. Wang, W. Liang, Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium, Bioresour. Technol., 262 (2018) 342–346.
  22. J.I. Labbé, J.L. Ramos-Suárez, A. Hernández-Pérez, A. Baeza, F. Hansen, Microalgae growth in polluted effluents from the dairy industry for biomass production and phytoremediation, J. Environ. Chem. Eng., 5 (2017) 635–643.
  23. Z.Y. Liu, G.C. Wang, B.C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99 (2008) 4717–4722.
  24. S.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandao, E.G.P. Da Silva, L.A. Portugal, P.S. Dos Reis, A.S. Souza, W.N.L. Dos Santos, Box–Behnken design: an alternative for the optimization of analytical methods, Anal. Chim. Acta, 597 (2007) 179–186.
  25. M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, R. El Hamri, A. Taitai, Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box–Behnken design and desirability function, Appl. Surf. Sci., 258 (2012) 4402–4410.
  26. R. Ragonese, M. Macka, J. Hughes, P. Petocz, The use of the Box–Behnken experimental design in the optimization and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation, J. Pharm. Biomed. Anal., 27 (2002) 995–1007.
  27. P. Singh, A. Guldhe, S. Kumari, I. Rawat, F. Bux, Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus, kj671624 using response surface methodology, Biochem. Eng. J., 94 (2015) 22–29.
  28. J.F. Fu, Y.Q. Zhao, X.D. Xue, W.C. Li, A.O. Babatunde, Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via the Box– Behnken design, Desalination, 243 (2009) 42–51.
  29. N. Thombare, U. Jha, S. Mishra, M.Z. Siddiqui, Guar gum as a promising starting material for diverse applications: a review, Int. J. Biol. Macromol., 88 (2016) 361–372.
  30. Y.X. Li, P. Yi, N.N. Wang, J. Liu, X.Q. Liu, Q.J. Yan, Z.Q. Jiang, High-level expression of β-mannanase (RmMan5A) in Pichia pastoris for partially hydrolyzed guar gum production, Int. J. Biol. Macromol., 105 (2017) 1171–1179.
  31. B. Jiang, Z. Sun, Y. Hou, L. Yang, F. Yang, X. Chen, X. Li, Isolation and properties of an endo-β-mannanase-producing Bacillus sp. lx114 capable of degrading guar gum, Prep. Biochem. Biotechnol., 46 (2015) 495–500.
  32. Z.Y. Ni, J.Y. Li, Z.Z. Xiong, L.H. Cheng, X.H. Xu, Role of granular activated carbon in the microalgal cultivation from bacteria contamination, Bioresour. Technol., 247 (2018) 36–43.
  33. H. Yan, C. Ye, C. Yin, Kinetics of phthalate ester biodegradation by Chlorella pyrenoidosa, Environ. Toxicol. Chem., 14 (1995) 931–938.
  34. B. Richard, Principles of Ecology, Saunders College Publisher, Philadelphia, PA, 1988.
  35. K. Xu, Biological Mathematics, Chinese Academy of Sciences, Beijing, China, 1988.