References
- T.W. Hao, P.Y. Xiang, H.R. Mackey, K. Chi, H. Lu, H.K. Chui,
M.C. van Loosdrecht, G.H. Chen, A review of biological sulfate
conversions in wastewater treatment, Water Res., 65 (2014)
1–21.
- M. Madani, M. Aliabadi, B. Nasernejad, R.K. Abdulrahman,
M.Y. Kilic, K. Kestioglu, Treatment of olive mill wastewater
using physico-chemical and Fenton processes, Desal. Wat.
Treat., 53 (2013) 2031–2040.
- P. Chatterjee, M.M. Ghangrekar, S. Rao, S. Kumar, Biotic
conversion of sulphate to sulphide and abiotic conversion of
sulphide to sulphur in a microbial fuel cell using cobalt oxide
octahedrons as cathode catalyst, Bioprocess. Biosyst. Eng.,
40 (2017) 759–768.
- L.C. Reyes-Alvarado, A. Hatzikioseyian, E.R. Rene, E. Houbron,
E. Rustrian, G. Esposito, P.N.L. Lens, Hydrodynamics and
mathematical modelling in a low HRT inverse fluidized-bed
reactor for biological sulphate reduction, Bioprocess. Biosyst.
Eng., 41 (2018) 1869–1882.
- A. Sarti, M. Zaiat, Anaerobic treatment of sulfate-rich
wastewater in an anaerobic sequential batch reactor (AnSBR)
using butanol as the carbon source, J. Environ. Manage.,
92 (2011) 1537–1541.
- Y. Hu, Z. Jing, Y. Sudo, Q. Niu, J. Du, J. Wu, Y.Y. Li, Effect of
influent COD/SO42– ratios on UASB treatment of a synthetic
sulfate-containing wastewater, Chemosphere, 130 (2015) 24–33.
- B. Zhang, J. Zhang, Q. Yang, C. Feng, Y. Zhu, Z. Ye, J. Ni,
Investigation and optimization of the novel UASB–MFC
integrated system for sulfate removal and bioelectricity
generation using the response surface methodology (RSM),
Bioresour. Technol., 124 (2012) 1–7.
- X. Lu, G. Zhen, J. Ni, T. Hojo, K. Kubota, Y.Y. Li. Effect of
influent COD/SO42– ratios on biodegradation behaviors of starch
wastewater in an upflow anaerobic sludge blanket (UASB)
reactor, Bioresour. Technol., 214 (2016) 175–183.
- P. Yang, W. Liao, H. Li, Aerobic granular sludge formation and
COD removal in a continuous-flow microbial fuel cell, Desal.
Wat. Treat., 129 (2018) 189–193.
- K. Rabaey, K.V.D. Sompel, L. Maignien, N. Boon. Microbial
fuel cells for sulfide removal, Environ. Sci. Technol., 40 (2006)
5218–5224.
- A. Angelov, S. Bratkova, A. Loukanov, Microbial fuel cell based
on electroactive sulfate-reducing biofilm, Energy Convers.
Manage., 67 (2013) 283–286.
- D.J. Lee, X. Liu, H.L. Weng, Sulfate and organic carbon removal
by microbial fuel cell with sulfate-reducing bacteria and
sulfide-oxidising bacteria anodic biofilm, Bioresour. Technol.,
156 (2014) 14–19.
- K. Wang, S. Zhang, Z. Chen, R. Bao, Interactive effect of electrode
potential on pollutants conversion in denitrifying sulfide
removal microbial fuel cells, Chem. Eng. J., 339 (2018) 442–449.
- L. Zhong, S. Zhang, Y. Wei, R. Bao, Power recovery coupled
with sulfide and nitrate removal in separate chambers using a
microbial fuel cell, Biochem. Eng. J., 124 (2017) 6–12.
- M.M. Ghangrekar, S.S.R. Murthy, M. Behera, N. Duteanu, Effect
of sulfate concentration in the wastewater on microbial fuel cell
performance., Environ. Eng. Manage. J., 9 (2010) 1227–1234.
- S. Liu, L. Li, H. Li, H. Wang, P. Yang, Study on ammonium
and organics removal combined with electricity generation
in a continuous flow microbial fuel cell, Bioresour. Technol.,
243 (2017) 1087–1096.
- J. Guo, Y. Kang, Characterization of sulfate-reducing bacteria
anaerobic granular sludge and granulometric analysis with
grey relation, Korean J. Chem. Eng., 35 (2018) 1829–1835.
- J. Huang, P. Yang, Y. Guo, K. Zhang, Electricity generation
during wastewater treatment: an approach using an AFB–
MFC for alcohol distillery wastewater, Desalination, 276 (2011)
373–378.
- APHA, Standard Methods for the Examination of Water and
Wastewater, 20th ed., Persulfate Method, APHA, AWWA &
WEF, Washington, 1998.
- Z. Wang, M. Gao, Z. She, S. Wang, C. Jin, Y. Zhao, S. Yang, L.
Guo, Effects of salinity on performance, extracellular polymeric
substances and microbial community of an aerobic granular
sequencing batch reactor, Sep. Purif. Technol., 144 (2015) 223–231.
- W. Qiao, K. Takayanagi, Q. Li, M. Shofie, F. Gao, R. Dong, Y.Y. Li,
Thermodynamically enhancing propionic acid degradation by
using sulfate as an external electron acceptor in a thermophilic
anaerobic membrane reactor, Water Res., 106 (2016) 320–329.
- X. Lu, J. Ni, G. Zhen, K. Kubota, Y.Y. Li, Response of morphology
and microbial community structure of granules to influent
COD/SO42– ratios in an upflow anaerobic sludge blanket
(UASB) reactor treating starch wastewater, Bioresour. Technol.,
256 (2018) 456–465.
- R.J.W. Meulepas, C.G. Jagersma, Y. Zhang, M. Petrillo, H. Cai,
C.J. Buisman, A.J. Stams, P.N. Lens, Trace methane oxidation
and the methane dependency of sulfate reduction in anaerobic
granular sludge, FEMS Microbiol. Ecol., 72 (2010) 261–271.
- M.H.R.Z. Damianovic, E. Foresti, Anaerobic degradation of
synthetic wastewaters at different levels of sulfate and COD/sulfate ratios in horizontal-flow anaerobic reactors (HAIB),
Environ. Eng. Sci., 24 (2007) 383–393.
- V.F.D. Albuquerque, A.L.D. Barros, A.C. Lopes, A.B. dos Santos,
R.F. do Nascimento, Removal of the metal ions Zn2+, Ni2+, and
Cu2+ by biogenic sulfide in UASB reactor and speciation studies,
Desal. Wat. Treat., 51 (2013) 2093–2101.
- J.L. Chen, R. Ortiz, T.W. Steele, D.C. Stuckey, Toxicants
inhibiting
anaerobic digestion: a review, Biotechnol. Adv.,
32 (2014) 1523–1534.
- C. Huiliñir, R. Medina, S. Montalvo, A. Castillo, L. Guerrero,
Biological nitrification in the presence of sulfide and organic
matter: effect of zeolite on the process in a batch system, J.
Chem. Technol. Biotechnol., 93 (2018) 2390–2398.
- F. Fdz-Polanco, M. Fdz-Polanco, N. Fernandez, M.A. Urueña,
P.A. Garcia, S. Villaverde, New process for simultaneous
removal of nitrogen and sulphur under anaerobic conditions,
Water Res., 35 (2001) 1111–1114.
- C. Chen, A. Wang, N. Ren, H. Kan, D.J. Lee, Biological
breakdown of denitrifying sulfide removal process in high-rate
expanded granular bed reactor, Appl. Microbiol. Biotechnol., 81
(2008) 765–770.
- H. Greben, J. Maree, E. Eloff, K. Murray, Improved sulphate
removal rates at increased sulphide concentration in the
sulphidogenic bioreactor, Water SA, 31 (2005) 351–358.
- G. Na, D.E. Salt, The role of sulfur assimilation and sulfurcontaining
compounds in trace element homeostasis in plants,
Environ. Exp. Bot., 72 (2011) 18–25.
- H. Pauwels, V. Ayraud-Vergnaud, L. Aquilina, J. Molénat, The
fate of nitrogen and sulfur in hard-rock aquifers as shown by
sulfate-isotope tracing, Appl. Geochem., 25 (2010) 105–115.
- L. Wei, H. Han, J. Shen, Effects of temperature and ferrous
sulfate concentrations on the performance of microbial fuel cell,
Int. J. Hydrogen Energy, 38 (2013) 11110–11116.
- I. Ieropoulos, J. Greenman, C. Melhuish, J. Hart, Energy
accumulation and improved performance in microbial fuel
cells, J. Power Sources, 145 (2005) 253–256.
- G. Liu, S. Yu, H. Luo, R. Zhang, S. Fu, X. Luo, Effects of salinity
anions on the anode performance in bioelectrochemical
systems, Desalination, 351 (2014) 77–81.
- F. Zhao, N. Rahunen, J.R. Varcoe, A.J. Roberts, C. Avignone-Rossa, A.E. Thumser, R.C.T. Slade, Factors affecting the performance
of microbial fuel cells for sulfur pollutants removal,
Biosens. Bioelectron., 24 (2009) 1931–1936.
- N. Jannelli, R. Anna Nastro, V. Cigolotti, M. Minutillo,
G. Falcucci, Low pH, high salinity: too much for microbial fuel
cells?, Appl. Energy, 192 (2017) 543–550.
- S.F. Corsino, M. Capodici, M. Torregrossa, G. Viviani, Physical
properties and extracellular polymeric substances pattern
of aerobic granular sludge treating hypersaline wastewater,
Bioresour. Technol., 229 (2017) 152–159.
- R. Campo, S.F. Corsino, M. Torregrossa, G.D. Bella, The role of
extracellular polymeric substances on aerobic granulation with
stepwise increase of salinity, Sep. Purif. Technol., 195 (2017)
12–20.
- Y.L. Kang, S. Pichiah, S. Ibrahim, Facile reconstruction of
microbial fuel cell (MFC) anode with enhanced exoelectrogens
selection for intensified electricity generation, Int. J. Hydrogen
Energy, 42 (2017) 1661–1671.
- X. Zeng, Z. Zhang, X. Li, X. Zhang, J. Cao, M. Jebbar, K. Alain,
Z. Shao, Anoxybacter fermentans gen. nov., sp. nov., a piezophilic,
thermophilic, anaerobic, fermentative bacterium isolated from
a deep-sea hydrothermal vent, Int. J. Syst. Evol. Microbiol.,
65 (2014) 710–715.
- W.B. Hania, A. Postec, T. Aullo, A. Ranchou-Peyruse, G. Erauso,
C. Brochier-Armanet, M. Hamdi, B. Ollivier, S. Saint-Laurent,
M. Magot, M.L. Fardeau, Mesotoga infera sp. nov., a mesophilic
member of the order Thermotogales, isolated from an underground
gas storage aquifer, Int. J. Syst. Evol. Microbiol.,
63 (2013) 3003–3008.
- K.A. Deweerd, L. Mandelco, R.S. Tanner, C.R. Woese,
J.M. Suflita, Desulfomonile tiedjei gen. nov. and sp. nov., a novel
anaerobic, dehalogenating, sulfate-reducing bacterium, Arch.
Microbiol., 154 (1990) 23–30.
- Y.G. Zhao, Y. Zhang, Z. She, Y. Shi, M. Wang, M. Gao, L. Guo,
Effect of substrate conversion on performance of microbial fuel
cells and anodic microbial communities, Environ. Eng. Sci.,
34 (2017) 666–674.
- S. Scheller, H. Yu, G.L. Chadwick, S.E. Mcglynn, V.J. Orphan,
Artificial electron acceptors decouple archaeal methane
oxidation from sulfate reduction, Science, 351 (2016) 703–707.
- J. Palatsi, J. Illa, F.X. Prenafeta-Boldú, M. Laureni, B. Fernandez,
I. Angelidaki, X. Flotats, Long-chain fatty acids inhibition
and adaptation process in anaerobic thermophilic digestion:
batch tests, microbial community structure and mathematical
modelling, Bioresour. Technol., 101 (2010) 2243–2251.