References
- M. Errami, G.E. Dib, M. Cazaunau, E. Roth, R. Salghi,
A. Mellouki, A. Chakir, Atmospheric degradation of pyridine:
UV absorption spectrum and reaction with OH radicals and
O3, Chem. Phys. Lett., 662 (2016) 141–145.
- S. Singh, L.L. Shang, Catalytic performance of hierarchical metal
oxides for per-oxidative degradation of pyridine in aqueous
solution, Chem. Eng. J., 309 (2016) 753–765.
- Y. Jin, Q. Yue, K. Yang, S. Wu, S. Li, B. Gao, Y. Gao, Pre-treatment
of pyridine wastewater by new cathodic–anodic-electrolysis
packing, J. Environ. Sci., 63 (2018) 43–49.
- N. Li, X. Lu, S. Zhang, A novel reuse method for waste printed
circuit boards as catalyst for wastewater bearing pyridine
degradation, Chem. Eng. J., 257 (2014) 253–261.
- J. Wang, X. Jiang, X. Liu, X. Sun, W. Han, J. Li, L. Wang, Microbial
degradation mechanism of pyridine by Paracoccus sp. NJUST30
newly isolated from aerobic granules, Chem. Eng. J., 344 (2018)
86–94.
- D.H. Lataye, I.M.M. And, I.D. Mall, Removal of pyridine from
aqueous solution by adsorption on bagasse fly ash, Ind. Eng.
Chem. Res., 45 (2006) 3934–3943.
- F. Tian, R.S. Zhu, K. Song, F. Ouyang, G. Cao, Synergistic
photocatalytic degradation of phenol using precious metal
supported titanium dioxide with hydrogen peroxide, Environ.
Eng. Sci., 33 (2016) 185–192.
- Z.H. Jiang, Technical progress and market demand of pyridine
compounds, acetaldehyde acetic acid, Chem. Ind., 1 (2013)
14–17.
- D.R. Stapleton, I.K. Konstantinou, D. Mantzavinos, D. Hela, M.
Papadaki, On the kinetics and mechanisms of photolytic/TiO2-photocatalytic degradation of substituted pyridines in aqueous
solutions, Appl. Catal., B., 95 (2010) 100–109.
- F. Tian, R. Zhu, F. Ouyang, Synergistic photocatalytic
degradation of pyridine using precious metal supported TiO2
with KBrO3, J. Environ. Sci., 11 (2013) 2299–2305.
- S.V. Mohan, S. Sistla, R.K. Guru, K.K. Prasad, C.S. Kumar, S.V.
Ramakrishna, P.N. Sarma, Microbial degradation of pyridine
using Pseudomonas sp. and isolation of plasmid responsible for
degradation, Waste Manage., 23 (2003) 167–171.
- X. Liu, Y. Chen, X. Zhang, X. Jiang, S. Wu, J. Shen, X. Sun,
J. Li, L. Lu, L. Wang, Aerobic granulation strategy for
bioaugmentation of a sequencing batch reactor (SBR) treating
high strength pyridine wastewater, J. Hazard. Mater., 295 (2015)
153–160.
- M.Z. Kamrath, R.A. Relph, M.A. Johnson, Vibrational
predissociation spectrum of the carbamate radical anion,
C5H5N-CO2−, generated by reaction of pyridine with (CO2)m−,
J. Am. Chem. Soc., 132 (2010) 15508–15511.
- O.A. Zalat, M.A. Elsayed, A study on microwave removal of
pyridine from wastewater, J. Environ. Chem. Eng., 1 (2013)
137–143.
- F. Nerud, P. Baldrian, J. Gabriel, D. Ogbeifun, Decolorization of
synthetic dyes by the Fenton reagent and the Cu/pyridine/H2O2
system, Chemosphere, 44 (2001) 957–961.
- K.V. Padoley, S.N. Mudliar, S.K. Banerjee, S.C. Deshmukh,
R.A. Pandey, Fenton oxidation: a pretreatment option for
improved biological treatment of pyridine and 3-cyanopyridine
plant wastewater, Chem. Eng. J., 1 (2011) 1–9.
- Q. Zhu, G.D. Moggridge, C. D’Agostino, Adsorption of pyridine
from aqueous solutions by polymeric adsorbents MN 200 and
MN 500. Part 2: kinetics and diffusion analysis, Chem. Eng. J.,
306 (2016) 1223–1233.
- D. Li, J. Tang, X. Zhou, J. Li, X. Sun, J. Shen, L. Wang, W. Han,
Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular
porous electrode, Chemosphere, 149 (2016) 49–56.
- S. Kumar, S. Singh, V.C. Srivastava, Electro-oxidation of
nitrophenol by ruthenium oxide coated titanium electrode:
parametric, kinetic and mechanistic study, Chem. Eng. J., 263
(2015) 135–143.
- C.W. Zhu, C.Q. Jiang, S. Chen, R.Q. Mei, X. Wang, J. Cao,
L. Ma, B. Zhou, Q.P. Wei, G.Q. Ouyang, Z.M. Yu, K.C. Zhou,
Ultrasound enhanced electrochemical oxidation of Alizarin Red
S on boron doped diamond(BDD) anode: Effect of degradation
process parameters, Chemosphere, 209 (2018) 685–695.
- A. Fajardo, H. Seca, R. Martins, V. Corceiro, I. Freitas,
M. Quinta-Ferreira, R. Quinta-Ferreira, Electrochemical oxidation
of phenolic wastewaters using a batch-stirred reactor with
NaCl electrolyte and Ti/RuO2 anodes, J. Electroanal. Chem.,
785 (2016) 180–189.
- E. Isarain-Chávez, M.D. Baró, E. Rossinyol, U. Morales-Ortiz,
J. Sort, E. Brillas, E. Pellicer, Comparative electrochemical
oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn,
Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes, Electrochim. Acta,
244 (2017) 199–208.
- K.D. Radosavljević, J.D. Lović, D.Ž. Mijin, S.D. Petrović, M.B.
Jadranin, A.R. Mladenović, M.L. Avramov Ivić, Degradation
of azithromycin using Ti/RuO2 anode as catalyst followed
by DPV, HPLC–UV and MS analysis, Chem. Pap., 71 (2017)
1217–1224.
- P.J. Kuang, C.P. Feng, N. Chen, W. Hu, G. Wang, T. Peng, L. Lv,
Improvement on electrochemical nitrate removal by combining
with the three-dimensional (3-D) perforated iron cathode and
the iron net, J. Electrochem. Soc., 163 (2016) 397–406.
- H.Y. Li, X. Xing, K. Wang, X.P. Zhu, Y. Jiang, J.X. Xia, Improved
BDD anode system in electrochemical degradation of
p-nitrophenol by corroding electrode of iron, Electrochim. Acta,
291 (2018) 335–342.
- M. Ali, A. Elreedy, M.G. Ibrahim, M. Fujii, A. Tawfik, Hydrogen
and methane bio-production and microbial community
dynamics in a multi-phase anaerobic reactor treating saline
industrial wastewater, Energy Convers. Manage., 186 (2019)
1–14.
- X.H. Chen, Rapid detection of 39 carbamate pesticide residues
in drinking water by liquid chromatography-tandem mass
spectrometry, Ecol. Environ. Monit. Three Gorges, 3 (2018)
55–61.
- S.L. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David,
G.C. Brando, E.G. da Silva, L.A. Portugal, P.S. dos Reis, A.S.
Souza, W.N. dos Santos, Box–Behnken design: an alternative
for the optimization of analytical methods, Anal. Chem. Acta,
597 (2007) 179–186.
- E. Flores-Girón, J.A. Salazar-Montoya, E.G. Ramos-Ramírez,
Application of a Box–Behnken design for optimizing the
extraction process of agave fructans, J. Sci. Food Agric., 96 (2015)
3860–3866.
- S. Choe, H.M. Liljestrand, J. Khim, Nitrate reduction by zerovalent
iron under different pH regimes, Appl. Geophys.,
19 (2004) 335–342.
- X.Y. Duan, F. Xu, Y.N. Wang, Y.W. Chen, L.M. Chang, Fabrication
of a hydrophobic SDBS-PbO2 anode for electrochemical
degradation of nitrobenzene in aqueous solution, Electrochim.
Acta, 282 (2018) 662–671.
- Z. Xu, H. Liu, J. Niu, Y. Zhou, C. Wang, Y. Wang, Hydroxyl
multi-walled carbon nanotube-modified nanocrystalline PbO2
anode for removal of pyridine from wastewater, J. Hazard.
Mater., 327 (2017) 144–152.
- P.J. Kuang, C.P. Feng, M. Li, N. Chen, Q. Hu, G. Wang,
R. Li, Improvement on electrochemical reduction of nitrate
in synthetic groundwater by reducing anode surface area,
J. Electrochem. Soc., 164 (2017) 103–112.
- B. Khemakhem, I. Fendri, I. Dahech, K. Belghuith, R. Kammoun,
H. Mejdoub, Purification and characterization of a maltogenic
amylase from Fenugreek (Trigonella foenum graecum) seeds using
the Box–Benkhen Design (BBD), Ind. Crops Prod., 43 (2013)
334–339.
- Y. Deng, N. Chen, C. Feng, F. Chen, H. Wang, P. Kuang,
Z. Feng, T. Liu, Y. Gao, W. Hu, Treatment of organic wastewater
containing nitrogen and chlorine by combinatorial
electrochemical system: taking biologically treated landfill
leachate treatment as an example, Chem. Eng. J., 364 (2019a)
349–360.
- Y. Deng, N. Chen, C. Feng, H. Wang, Y. Zheng, F. Chen, W. Lu,
P. Kuang, H. Feng, Y. Gao, W. Hu, Degradation of nitrogencontaining
refractory organic wastewater using a novel
alternating-anode electrochemical system, Sci. Total Environ.,
697 (2019b) 134161.
- M. Li, C.P. Feng, Z. Zhang, S. Yang, N. Sugiura, Treatment of
nitrate contaminated water using an electrochemical method,
Bioresour. Technol., 101 (2010) 6553–6557.
- Y. Wang, Z. Shen, X. Chen, Effects of experimental parameters
on 2,4-dichlorphenol degradation over Er-chitosan-PbO2
electrode, J. Hazard. Mater., 178 (2010) 867–874.
- J. Du, Z. Chen, C. Chen, T.J. Meyer, An alternative half reaction
to water oxidation: chloride oxidation to chlorine catalyzed by
silver ion, J. Am. Chem. Soc., 137 (2015) 3193–3196.
- A. Urtiaga, P. Fernandez-Castro, P. Gómez, I. Ortiz, Remediation
of wastewaters containing tetrahydrofuran. Study of the
electrochemical mineralization on BDD electrodes, Chem. Eng.
J., 239 (2014) 341–350.
- E. Brillas, J. Casado, Aniline degradation by electro-Fenton
and peroxi-coagulation processes using a flow reactor for
wastewater treatment, Chemosphere, 47 (2002) 241–248.
- G. Emtiazi, M. Satarii, F. Mazaherion, The utilization of aniline,
chlorinated aniline, and aniline blue as the only source of
nitrogen by fungi in water, Water Res., 35 (2001) 1219–1224.
- S.P. Kamble, S.B. Sawant, J.C. Schouten, V.G. Pangarkar, The
utilization of aniline, chlorinated aniline, and aniline blue as
the only source of nitrogen by fungi in water, J. Chem. Technol.
Biotechnol., 78 (2003) 865–872.
- J. Jasper, Y. Yang, M.R. Hoffmann, Toxic by-product formation
during electrochemical treatment of latrine wastewater,
Environ. Sci. Technol., 51 (2017) 7111–7119.
- A. Adachi, H. Hamamoto, T. Okano, Use of lees materials as
an adsorbent for removal of organochlorine compounds or
benzene from wastewater, Chemosphere, 58 (2005) 817–822.
- Y. Zhou, C. Shi, G. Dong, Analysis of a mechanical vapor
recompression wastewater distillation system, Desalination,
353 (2014) 91–97.
- A. Fernandes, D. Santos, M.J. Pacheco, L. Ciríaco, A. Lopes,
Electrochemical oxidation of humic acid and sanitary landfill
leachate: influence of anode material, chloride concentration
and current density, Sci. Total Environ., 541 (2016) 282–291.
- Y. Deng, C. Feng, N. Chen, W. Hu, P. Kuang, H. Liu, Z. Hu,
R. Li, Research on the treatment of biologically treated landfill
leachate by joint electrochemical system, Waste Manage.,
82 (2018) 177–187.
- J. Zhou, Y. Ding, Experimental study on acid dye wastewater
treatment by electrochemical oxidation, Ind. Water Wastewater,
6 (2011) 37–39.
- H. Zhang, D. Zhang, J. Zhou, Removal of COD from landfill
leachate by electro-Fenton method, J. Hazard. Mater., 135 (2006)
106–111.
- O. Gökhan, H. Gökçe, K. Özgül, Application of response
surface methodology (RSM) to evaluate the influence of
deposition parameters on the electrolytic Cu-Zn alloy powder,
Int. J. Electrochem. Sci., 6 (2011) 3966–3981.
- A. Fernandes, M.J. Pacheco, L. Ciríaco, A. Lopes, Review on the
electrochemical processes for the treatment of sanitary landfill
leachates: present and future, Appl. Catal., B, 176–177 (2015)
183–200.
- P. Kuang, N. Chen, C. Feng, M. Li, S. Dong, L. Lv, J. Zhang,
Z. Hu, Y. Deng, Construction and optimization of an iron
particle–zeolite packing electrochemical–adsorption system for
the simultaneous removal of nitrate and by-products, J. Taiwan
Inst. Chem. Eng., 86 (2018) 101–112.
- A.R. Rahmani, K. Godini, D. Nematollahi, G. Azarian,
Electrochemical oxidation of activated sludge by using direct
and indirect anodic oxidation, Desal. Water Treat., 56 (2015)
2234–2245.
- F. Khasaeva, N. Vasilyuk, P. Terentyev, M. Troshina,
A.T. Lebedev, A novel soil bacterial strain degrading pyridines,
Environ. Chem. Lett., 9 (2011) 439–445.
- L. Zhang, R. Tian, Z. Chen, J. Guo, Y. Jia, Effects of NaCl salinity
on wastewater pollutants removal and microorganism in A2/O
technology process, Trans. Chin. Soc. Agr. Eng., 34 (2018)
231–237.