References

  1. M. Errami, G.E. Dib, M. Cazaunau, E. Roth, R. Salghi, A. Mellouki, A. Chakir, Atmospheric degradation of pyridine: UV absorption spectrum and reaction with OH radicals and O3, Chem. Phys. Lett., 662 (2016) 141–145.
  2. S. Singh, L.L. Shang, Catalytic performance of hierarchical metal oxides for per-oxidative degradation of pyridine in aqueous solution, Chem. Eng. J., 309 (2016) 753–765.
  3. Y. Jin, Q. Yue, K. Yang, S. Wu, S. Li, B. Gao, Y. Gao, Pre-treatment of pyridine wastewater by new cathodic–anodic-electrolysis packing, J. Environ. Sci., 63 (2018) 43–49.
  4. N. Li, X. Lu, S. Zhang, A novel reuse method for waste printed circuit boards as catalyst for wastewater bearing pyridine degradation, Chem. Eng. J., 257 (2014) 253–261.
  5. J. Wang, X. Jiang, X. Liu, X. Sun, W. Han, J. Li, L. Wang, Microbial degradation mechanism of pyridine by Paracoccus sp. NJUST30 newly isolated from aerobic granules, Chem. Eng. J., 344 (2018) 86–94.
  6. D.H. Lataye, I.M.M. And, I.D. Mall, Removal of pyridine from aqueous solution by adsorption on bagasse fly ash, Ind. Eng. Chem. Res., 45 (2006) 3934–3943.
  7. F. Tian, R.S. Zhu, K. Song, F. Ouyang, G. Cao, Synergistic photocatalytic degradation of phenol using precious metal supported titanium dioxide with hydrogen peroxide, Environ. Eng. Sci., 33 (2016) 185–192.
  8. Z.H. Jiang, Technical progress and market demand of pyridine compounds, acetaldehyde acetic acid, Chem. Ind., 1 (2013) 14–17.
  9. D.R. Stapleton, I.K. Konstantinou, D. Mantzavinos, D. Hela, M. Papadaki, On the kinetics and mechanisms of photolytic/TiO2-photocatalytic degradation of substituted pyridines in aqueous solutions, Appl. Catal., B., 95 (2010) 100–109.
  10. F. Tian, R. Zhu, F. Ouyang, Synergistic photocatalytic degradation of pyridine using precious metal supported TiO2 with KBrO3, J. Environ. Sci., 11 (2013) 2299–2305.
  11. S.V. Mohan, S. Sistla, R.K. Guru, K.K. Prasad, C.S. Kumar, S.V. Ramakrishna, P.N. Sarma, Microbial degradation of pyridine using Pseudomonas sp. and isolation of plasmid responsible for degradation, Waste Manage., 23 (2003) 167–171.
  12. X. Liu, Y. Chen, X. Zhang, X. Jiang, S. Wu, J. Shen, X. Sun, J. Li, L. Lu, L. Wang, Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater, J. Hazard. Mater., 295 (2015) 153–160.
  13. M.Z. Kamrath, R.A. Relph, M.A. Johnson, Vibrational predissociation spectrum of the carbamate radical anion, C5H5N-CO2, generated by reaction of pyridine with (CO2)m−, J. Am. Chem. Soc., 132 (2010) 15508–15511.
  14. O.A. Zalat, M.A. Elsayed, A study on microwave removal of pyridine from wastewater, J. Environ. Chem. Eng., 1 (2013) 137–143.
  15. F. Nerud, P. Baldrian, J. Gabriel, D. Ogbeifun, Decolorization of synthetic dyes by the Fenton reagent and the Cu/pyridine/H2O2 system, Chemosphere, 44 (2001) 957–961.
  16. K.V. Padoley, S.N. Mudliar, S.K. Banerjee, S.C. Deshmukh, R.A. Pandey, Fenton oxidation: a pretreatment option for improved biological treatment of pyridine and 3-cyanopyridine plant wastewater, Chem. Eng. J., 1 (2011) 1–9.
  17. Q. Zhu, G.D. Moggridge, C. D’Agostino, Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500. Part 2: kinetics and diffusion analysis, Chem. Eng. J., 306 (2016) 1223–1233.
  18. D. Li, J. Tang, X. Zhou, J. Li, X. Sun, J. Shen, L. Wang, W. Han, Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode, Chemosphere, 149 (2016) 49–56.
  19. S. Kumar, S. Singh, V.C. Srivastava, Electro-oxidation of nitrophenol by ruthenium oxide coated titanium electrode: parametric, kinetic and mechanistic study, Chem. Eng. J., 263 (2015) 135–143.
  20. C.W. Zhu, C.Q. Jiang, S. Chen, R.Q. Mei, X. Wang, J. Cao, L. Ma, B. Zhou, Q.P. Wei, G.Q. Ouyang, Z.M. Yu, K.C. Zhou, Ultrasound enhanced electrochemical oxidation of Alizarin Red S on boron doped diamond(BDD) anode: Effect of degradation process parameters, Chemosphere, 209 (2018) 685–695.
  21. A. Fajardo, H. Seca, R. Martins, V. Corceiro, I. Freitas, M. Quinta-Ferreira, R. Quinta-Ferreira, Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes, J. Electroanal. Chem., 785 (2016) 180–189.
  22. E. Isarain-Chávez, M.D. Baró, E. Rossinyol, U. Morales-Ortiz, J. Sort, E. Brillas, E. Pellicer, Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes, Electrochim. Acta, 244 (2017) 199–208.
  23. K.D. Radosavljević, J.D. Lović, D.Ž. Mijin, S.D. Petrović, M.B. Jadranin, A.R. Mladenović, M.L. Avramov Ivić, Degradation of azithromycin using Ti/RuO2 anode as catalyst followed by DPV, HPLC–UV and MS analysis, Chem. Pap., 71 (2017) 1217–1224.
  24. P.J. Kuang, C.P. Feng, N. Chen, W. Hu, G. Wang, T. Peng, L. Lv, Improvement on electrochemical nitrate removal by combining with the three-dimensional (3-D) perforated iron cathode and the iron net, J. Electrochem. Soc., 163 (2016) 397–406.
  25. H.Y. Li, X. Xing, K. Wang, X.P. Zhu, Y. Jiang, J.X. Xia, Improved BDD anode system in electrochemical degradation of p-nitrophenol by corroding electrode of iron, Electrochim. Acta, 291 (2018) 335–342.
  26. M. Ali, A. Elreedy, M.G. Ibrahim, M. Fujii, A. Tawfik, Hydrogen and methane bio-production and microbial community dynamics in a multi-phase anaerobic reactor treating saline industrial wastewater, Energy Convers. Manage., 186 (2019) 1–14.
  27. X.H. Chen, Rapid detection of 39 carbamate pesticide residues in drinking water by liquid chromatography-tandem mass spectrometry, Ecol. Environ. Monit. Three Gorges, 3 (2018) 55–61.
  28. S.L. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brando, E.G. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N. dos Santos, Box–Behnken design: an alternative for the optimization of analytical methods, Anal. Chem. Acta, 597 (2007) 179–186.
  29. E. Flores-Girón, J.A. Salazar-Montoya, E.G. Ramos-Ramírez, Application of a Box–Behnken design for optimizing the extraction process of agave fructans, J. Sci. Food Agric., 96 (2015) 3860–3866.
  30. S. Choe, H.M. Liljestrand, J. Khim, Nitrate reduction by zerovalent iron under different pH regimes, Appl. Geophys., 19 (2004) 335–342.
  31. X.Y. Duan, F. Xu, Y.N. Wang, Y.W. Chen, L.M. Chang, Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution, Electrochim. Acta, 282 (2018) 662–671.
  32. Z. Xu, H. Liu, J. Niu, Y. Zhou, C. Wang, Y. Wang, Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater, J. Hazard. Mater., 327 (2017) 144–152.
  33. P.J. Kuang, C.P. Feng, M. Li, N. Chen, Q. Hu, G. Wang, R. Li, Improvement on electrochemical reduction of nitrate in synthetic groundwater by reducing anode surface area, J. Electrochem. Soc., 164 (2017) 103–112.
  34. B. Khemakhem, I. Fendri, I. Dahech, K. Belghuith, R. Kammoun, H. Mejdoub, Purification and characterization of a maltogenic amylase from Fenugreek (Trigonella foenum graecum) seeds using the Box–Benkhen Design (BBD), Ind. Crops Prod., 43 (2013) 334–339.
  35. Y. Deng, N. Chen, C. Feng, F. Chen, H. Wang, P. Kuang, Z. Feng, T. Liu, Y. Gao, W. Hu, Treatment of organic wastewater containing nitrogen and chlorine by combinatorial electrochemical system: taking biologically treated landfill leachate treatment as an example, Chem. Eng. J., 364 (2019a) 349–360.
  36. Y. Deng, N. Chen, C. Feng, H. Wang, Y. Zheng, F. Chen, W. Lu, P. Kuang, H. Feng, Y. Gao, W. Hu, Degradation of nitrogencontaining refractory organic wastewater using a novel alternating-anode electrochemical system, Sci. Total Environ., 697 (2019b) 134161.
  37. M. Li, C.P. Feng, Z. Zhang, S. Yang, N. Sugiura, Treatment of nitrate contaminated water using an electrochemical method, Bioresour. Technol., 101 (2010) 6553–6557.
  38. Y. Wang, Z. Shen, X. Chen, Effects of experimental parameters on 2,4-dichlorphenol degradation over Er-chitosan-PbO2 electrode, J. Hazard. Mater., 178 (2010) 867–874.
  39. J. Du, Z. Chen, C. Chen, T.J. Meyer, An alternative half reaction to water oxidation: chloride oxidation to chlorine catalyzed by silver ion, J. Am. Chem. Soc., 137 (2015) 3193–3196.
  40. A. Urtiaga, P. Fernandez-Castro, P. Gómez, I. Ortiz, Remediation of wastewaters containing tetrahydrofuran. Study of the electrochemical mineralization on BDD electrodes, Chem. Eng. J., 239 (2014) 341–350.
  41. E. Brillas, J. Casado, Aniline degradation by electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment, Chemosphere, 47 (2002) 241–248.
  42. G. Emtiazi, M. Satarii, F. Mazaherion, The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water, Water Res., 35 (2001) 1219–1224.
  43. S.P. Kamble, S.B. Sawant, J.C. Schouten, V.G. Pangarkar, The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water, J. Chem. Technol. Biotechnol., 78 (2003) 865–872.
  44. J. Jasper, Y. Yang, M.R. Hoffmann, Toxic by-product formation during electrochemical treatment of latrine wastewater, Environ. Sci. Technol., 51 (2017) 7111–7119.
  45. A. Adachi, H. Hamamoto, T. Okano, Use of lees materials as an adsorbent for removal of organochlorine compounds or benzene from wastewater, Chemosphere, 58 (2005) 817–822.
  46. Y. Zhou, C. Shi, G. Dong, Analysis of a mechanical vapor recompression wastewater distillation system, Desalination, 353 (2014) 91–97.
  47. A. Fernandes, D. Santos, M.J. Pacheco, L. Ciríaco, A. Lopes, Electrochemical oxidation of humic acid and sanitary landfill leachate: influence of anode material, chloride concentration and current density, Sci. Total Environ., 541 (2016) 282–291.
  48. Y. Deng, C. Feng, N. Chen, W. Hu, P. Kuang, H. Liu, Z. Hu, R. Li, Research on the treatment of biologically treated landfill leachate by joint electrochemical system, Waste Manage., 82 (2018) 177–187.
  49. J. Zhou, Y. Ding, Experimental study on acid dye wastewater treatment by electrochemical oxidation, Ind. Water Wastewater, 6 (2011) 37–39.
  50. H. Zhang, D. Zhang, J. Zhou, Removal of COD from landfill leachate by electro-Fenton method, J. Hazard. Mater., 135 (2006) 106–111.
  51. O. Gökhan, H. Gökçe, K. Özgül, Application of response surface methodology (RSM) to evaluate the influence of deposition parameters on the electrolytic Cu-Zn alloy powder, Int. J. Electrochem. Sci., 6 (2011) 3966–3981.
  52. A. Fernandes, M.J. Pacheco, L. Ciríaco, A. Lopes, Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future, Appl. Catal., B, 176–177 (2015) 183–200.
  53. P. Kuang, N. Chen, C. Feng, M. Li, S. Dong, L. Lv, J. Zhang, Z. Hu, Y. Deng, Construction and optimization of an iron particle–zeolite packing electrochemical–adsorption system for the simultaneous removal of nitrate and by-products, J. Taiwan Inst. Chem. Eng., 86 (2018) 101–112.
  54. A.R. Rahmani, K. Godini, D. Nematollahi, G. Azarian, Electrochemical oxidation of activated sludge by using direct and indirect anodic oxidation, Desal. Water Treat., 56 (2015) 2234–2245.
  55. F. Khasaeva, N. Vasilyuk, P. Terentyev, M. Troshina, A.T. Lebedev, A novel soil bacterial strain degrading pyridines, Environ. Chem. Lett., 9 (2011) 439–445.
  56. L. Zhang, R. Tian, Z. Chen, J. Guo, Y. Jia, Effects of NaCl salinity on wastewater pollutants removal and microorganism in A2/O technology process, Trans. Chin. Soc. Agr. Eng., 34 (2018) 231–237.