References

  1. G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci., 33 (2008) 399–447.
  2. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  3. C. Namasivayam, R. Radhika, S. Suba, Uptake of dyes by a promising locally available agricultural solid waste: coir pith, Waste Manage., 21 (2001) 381–387.
  4. E.A. El-Sharkawy, A.Y. Soliman, K.M. Al-Amer, Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation, J. Colloid Interface Sci., 310 (2007) 498–508.
  5. Y.L. Ma, Z.R. Xu, T. Guo, P. You, Adsorption of methylene blue on Cu(II)-exchanged montmorillonite, J. Colloid Interface Sci., 280 (2004) 283–288.
  6. D. Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal, V.K. Gupta, The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies, Colloids Interface Sci. Commun., 7 (2015) 16–19.
  7. K. Tahir, A. Ahmad, B. Li, S. Nazir, A.U. Khan, T. Nasir, Z.U.H. Khan, R. Naz, M. Raza, Visible light photo catalytic inactivation of bacteria and photo degradation of methylene blue with Ag/TiO2 nanocomposite prepared by a novel method, J. Photochem. Photobiol., B, 162 (2016) 189–198.
  8. X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@rGO@TiO2-catalyzed photo-Fenton system, Sci. Rep., 5 (2015) 1–10.
  9. D.A.G. Sumalinog, S.C. Capareda, M.D.G. de Luna, Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes, J. Environ. Manage., 210 (2018) 255–262.
  10. I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 113 (2012) 170–183.
  11. A.A. Azzaz, S. Jellali, H. Akrout, A.A. Assadi, L. Bousselmi, Optimization of a cationic dye removal by a chemically modified agriculture by-product using response surface methodology: biomasses characterization and adsorption properties, Environ. Sci. Pollut. Res., 24 (2017) 9831–9846.
  12. A.A. Azzaz, S. Jellali, A.A. Assadi, L. Bousselmi, Chemical treatment of orange tree sawdust for a cationic dye enhancement removal from aqueous solutions: kinetic, equilibrium and thermodynamic studies, Desal. Wat. Treat., 57 (2016) 22107–22119.
  13. S.L. Avelar, W.E.P. Martim, M.P. Vianna, A new occurence of Limnoperna fortunei (Dunker 1856) (Bivalvia, Mytilidae) in the state of Sao Paulo, Brazil, Braz. J. Biol., 64 (2003) 739–742.
  14. M.D. Oliveira, D.F. Calheiros, C.M. Jacobi, S.K. Hamilton, Abiotic factors controlling the establishment and abundance of the invasive golden mussel Limnoperna fortunei, Biol. Invasions, 13 (2011) 717–729.
  15. G. Darrigran, G. Pastorino, The Recent Introduction of Asiatic Bivalve, Limnoperna fortunei (Mytilidae) into South America, The Veliger, 38 (1995) 171–175.
  16. G.Y. Yao, M.Z. Xu, X.H. An, Concrete deterioration caused by freshwater mussel Limnoperna fortunei fouling, Int. Biodeterior. Biodegrad., 121 (2017) 55–65.
  17. L. Wachholz, R.V. Nunes, J. Broch, C. De Souza, Possibilidade do uso de Mexilhão Dourado contaminado com metais tóxicos em dietas para frangos de corte, Rev. Colomb. Ciência Anim., 9 (2017) 227–235.
  18. G. Darrigran, C. Damboronea, Bio-invasion del mejillon dorado en el continente americano, Anim. Genet., 39 (2006) 561–563.
  19. S. Peña-Rodríguez, D. Fernández-Calviño, J.C. Nóvoa-Muñoz, M. Arias-Estévez, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, Kinetics of Hg(II) adsorption and desorption in calcined mussel shells, J. Hazard. Mater., 180 (2010) 622–627.
  20. M. El Haddad, A. Regti, M.R. Laamari, R. Slimani, R. Mamouni, S. El Antri, S. Lazar, Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions, J. Taiwan Inst. Chem. Eng., 45 (2014) 533–540.
  21. N. Seco-Reigosa, S. Peña-Rodríguez, J.C. Nóvoa-Muñoz, M. Arias-Estévez, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, A. Núñez-Delgado, Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture, Environ. Sci. Pollut. Res., 20 (2013) 2670–2678.
  22. Y.S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (2004) 171–177.
  23. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  24. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 1–11.
  25. C. Rombaldi, J.L. De Oliveira Arias, G.I. Hertzog, S.S. Caldas, J.P. Vieira, E.G. Primel, New environmentally friendly MSPD solid support based on golden mussel shell: characterization and application for extraction of organic contaminants from mussel tissue, Anal. Bioanal. Chem., 407 (2015) 4805–4814.
  26. L.A. Araujo, C.O. Bezerra, L.F. Cusioli, M.F. Silva, L. Nishi, R.G. Gomes, R. Bergamasco, Moringa oleifera biomass residue for the removal of pharmaceuticals from water, J. Environ. Chem. Eng., 6 (2018) 7192–7199.
  27. Z. Nan, Z. Shi, B. Yan, R. Guo, W. Hou, A novel morphology of aragonite and an abnormal polymorph transformation from calcite to aragonite with PAM and CTAB as additives, J. Colloid Interface Sci., 317 (2008) 77–82.
  28. H. Tap Van, L. Huong Nguyen, V. Dang Nguyen, X. Hoan Nguyen, T. Hai Nguyen, T. Vinh Nguyen, S. Vigneswaran, J. Rinklebe, H. Nguyen Tran, P. District, H. Chi Minh City, Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: batch and column studies, J. Environ. Manage., 241 (2019) 535–548.
  29. J.H. Shariffuddin, M.I. Jones, D.A. Patterson, Greener photocatalysts: hydroxyapatite derived from waste mussel shells for the photocatalytic degradation of a model azo dye wastewater, Chem. Eng. Res. Des., 91 (2013) 1693–1704.
  30. L. Lonappan, T. Rouissi, R. Kumar, S.K. Brar, A. Avalos, M. Verma, R.Y. Surampalli, J.R. Valero, Adsorption of methylene blue on biochar microparticles derived from different waste materials, Waste Manage., 49 (2016) 537–544.
  31. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76 (1998) 332–340.
  32. S. Douven, C.A. Paez, C.J. Gommes, The range of validity of sorption kinetic models, J. Colloid Interface Sci., 448 (2015) 437–450.
  33. H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  34. K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti, V.C. Almeida, KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal, Chem. Eng. J., 286 (2016) 476–484.
  35. S.W. Nam, D.J. Choi, S.K. Kim, N. Her, K.D. Zoh, Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon, J. Hazard. Mater., 270 (2014) 144–152.
  36. K.J. Mellish, R.D. Cox, D.I. Vernon, J. Griffiths, S.B. Brown, In Vitro photodynamic activity of a series of Methylene Blue analogues, Photochem. Photobiol., 75 (2004) 392.