References
- J. Mao, J. Lee, K. Choi, The extended Kalman filter for forecast
of algal bloom dynamics, J. Water Res., 6 (2009) 513–517.
- M. Rowe, E. Anderson, T. Wynne, R. Stumpf, D. Fanslow,
K. Kijanka, H. Vanderploeg, J. Strickler, T. Davis, Vertical
distribution of buoyant Microcystis blooms in a Lagrangian
particle tracking model for short-term forecasts in Lake Erie,
J. Geophys. Res., 7 (2016) 5296–5314.
- L. Wang, T. Zhang, X. Jin, J. Xu, X. Wang, H. Zhang, J. Yu,
Q. Sun, Z. Zhao, L. Zheng. Multi-factor nonlinear time-series
ecological modelling for algae bloom forecasting, Desal. Water
Treat., 122 (2018) 91–99.
- J. Deng, H.W. Paerl, B. Qin, Y. Zhang, G. Zhu, E. Jeppesen,
Y. Cai, H. Xu. Climatically-modulated decline in wind speed
may strongly affect eutrophication in shallow lakes, Sci. Total
Environ., 645 (2018) 1361–1370.
- J. Mcgowan, E. Deyle, H. Ye, M. Carter, Predicting coastal algal
blooms in southern California, Ecology, 98 (2017) 1419–1433.
- D. Obenour, A. Gronewold, C. Stow, D. Scavia, Using a Bayesian
hierarchical model to improve Lake Erie cyanobacteria bloom
forecasts, Water Resour. Res., 50 (2014) 7847–7860.
- Y. Kim, H. Shin, J. Plummer, A wavelet-based autoregressive
fuzzy model for forecasting algal blooms, Environ. Modell.
Software, 62 (2014) 1–10.
- X. Bai, H. Zhang, X. Wang, L. Wang, J. Xu, J, Yu, The adaptiveclustering
and error-correction method for forecasting
cyanobacteria blooms in lakes and reservoirs, Adv. Math. Phys.,
7 (2017) 1–7.
- J. Shin, S. Yoon, Y. Cha, Prediction of cyanobacteria blooms in
the lower Han River (South Korea) using ensemble learning
algorithms, Desal. Water Treat., 84 (2017) 31–39.
- G. Lee, J. Bae, S. Lee, M. Jang, H. Park, Monthly chlorophyll-a
prediction using neuro-genetic algorithm for water quality
management in lakes, Desal. Water Treat., 57 (2016) 26783–26791.
- M. Ghorbania, R. Khatibic, A. Mehrd, H. Asadi, Chaos-based
multigene genetic programming: a new hybrid strategy for
river flow forecasting, J. Hydrol., 562 (2018) 455–467.
- W. Pan, C. Wu, Z. Li, M. Li, Prediction of self-heating process
of sulfide ore heap using trend and chaos prediction model,
J. Cent. South Univ., 3 (2015) 901–907.
- T. Kutser, Quantitative detection of chlorophyll in cyanobacterial
blooms by satellite remote sensing, Limnol. Oceanogr., 49 (2004)
2179–2189.
- L. Lu, W. Jin, X. Wang, Non-local means image denoising with a
soft threshold, IEEE Signal Process Lett., 22 (2015) 833–837.
- S. Paris, P. Kornprobst, J. Tumblin, Bilateral filtering, Int.
J. Numer. Methods Eng., 63 (2009) 1911–1938.
- Y. Chen, P. Luh, C. Guan, Y. Zhao, L. Michel, M. Coolbeth,
P. Friendland, S. Rourke, Short-term load forecasting: similar
day-based wavelet neural networks, IEEE Trans. Power Syst.,
25 (2008) 322–330.
- R. Fang, J. Zhou, Probabilistic interval forecasting of
short-term load on the basis of clustering algorithm and Chaos
theory, Power. Syst. Technol., 34 (2010) 70–76.
- L. Dong, L. Wang, S. Khahro, S. Gao, X. Liao, Wind power dayahead
prediction with cluster analysis of NWP, Renewable
Sustainable Energy Rev., 60 (2016) 1206–1212.