References

  1. J. Mao, J. Lee, K. Choi, The extended Kalman filter for forecast of algal bloom dynamics, J. Water Res., 6 (2009) 513–517.
  2. M. Rowe, E. Anderson, T. Wynne, R. Stumpf, D. Fanslow, K. Kijanka, H. Vanderploeg, J. Strickler, T. Davis, Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short-term forecasts in Lake Erie, J. Geophys. Res., 7 (2016) 5296–5314.
  3. L. Wang, T. Zhang, X. Jin, J. Xu, X. Wang, H. Zhang, J. Yu, Q. Sun, Z. Zhao, L. Zheng. Multi-factor nonlinear time-series ecological modelling for algae bloom forecasting, Desal. Water Treat., 122 (2018) 91–99.
  4. J. Deng, H.W. Paerl, B. Qin, Y. Zhang, G. Zhu, E. Jeppesen, Y. Cai, H. Xu. Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes, Sci. Total Environ., 645 (2018) 1361–1370.
  5. J. Mcgowan, E. Deyle, H. Ye, M. Carter, Predicting coastal algal blooms in southern California, Ecology, 98 (2017) 1419–1433.
  6. D. Obenour, A. Gronewold, C. Stow, D. Scavia, Using a Bayesian hierarchical model to improve Lake Erie cyanobacteria bloom forecasts, Water Resour. Res., 50 (2014) 7847–7860.
  7. Y. Kim, H. Shin, J. Plummer, A wavelet-based autoregressive fuzzy model for forecasting algal blooms, Environ. Modell. Software, 62 (2014) 1–10.
  8. X. Bai, H. Zhang, X. Wang, L. Wang, J. Xu, J, Yu, The adaptiveclustering and error-correction method for forecasting cyanobacteria blooms in lakes and reservoirs, Adv. Math. Phys., 7 (2017) 1–7.
  9. J. Shin, S. Yoon, Y. Cha, Prediction of cyanobacteria blooms in the lower Han River (South Korea) using ensemble learning algorithms, Desal. Water Treat., 84 (2017) 31–39.
  10. G. Lee, J. Bae, S. Lee, M. Jang, H. Park, Monthly chlorophyll-a prediction using neuro-genetic algorithm for water quality management in lakes, Desal. Water Treat., 57 (2016) 26783–26791.
  11. M. Ghorbania, R. Khatibic, A. Mehrd, H. Asadi, Chaos-based multigene genetic programming: a new hybrid strategy for river flow forecasting, J. Hydrol., 562 (2018) 455–467.
  12. W. Pan, C. Wu, Z. Li, M. Li, Prediction of self-heating process of sulfide ore heap using trend and chaos prediction model, J. Cent. South Univ., 3 (2015) 901–907.
  13. T. Kutser, Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing, Limnol. Oceanogr., 49 (2004) 2179–2189.
  14. L. Lu, W. Jin, X. Wang, Non-local means image denoising with a soft threshold, IEEE Signal Process Lett., 22 (2015) 833–837.
  15. S. Paris, P. Kornprobst, J. Tumblin, Bilateral filtering, Int. J. Numer. Methods Eng., 63 (2009) 1911–1938.
  16. Y. Chen, P. Luh, C. Guan, Y. Zhao, L. Michel, M. Coolbeth, P. Friendland, S. Rourke, Short-term load forecasting: similar day-based wavelet neural networks, IEEE Trans. Power Syst., 25 (2008) 322–330.
  17. R. Fang, J. Zhou, Probabilistic interval forecasting of short-term load on the basis of clustering algorithm and Chaos theory, Power. Syst. Technol., 34 (2010) 70–76.
  18. L. Dong, L. Wang, S. Khahro, S. Gao, X. Liao, Wind power dayahead prediction with cluster analysis of NWP, Renewable Sustainable Energy Rev., 60 (2016) 1206–1212.