References

  1. T. Kiljanek, A. Niewiadowska, S. Semeniuk, M. Gaweł, M. Borzęcka, A. Posyniak, Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry honeybee poisoning incidents, J. Chromatogr. A, 1435 (2016) 100–114.
  2. F. Islam, J. Wang, M.A. Farooq, M.S.S. Khan, L. Xu, J. Zhu, M. Zhao, S. Muños, Q.X. Li, W. Zhou, Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems, Environ. Int., 111 (2018) 332–351.
  3. E.Y.A. Pazou, M. Boko, C.A.M. van Gestel, H. Ahissou, P. Lalèyè, S. Akpona, B. van Hattum, K. Swart, N.M. van Straalen, Organochlorine and organophosphorous pesticide residues in the Oueme River catchment in the Republic of Benin, Environ. Int., 32 (2006) 616–623.
  4. I. Rosendahl, V. Laabs, C. Atcha-Ahow, B. James, W. Amelung, Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa, J. Environ. Monit., 11 (2009) 1157–1164.
  5. M.A.N. Gbaguidi, H.H. Soclo, Y.M. Issa, B. Fayomi, R. Dognon, A. Agagbe, C. Bonou, A. Youssao, L.F. Dovonou, A. SANNI, Evaluation quantitative des résidus de pyréthrinoïdes, d’aminophosphate et de triazines en zones de production de coton au Bénin par la méthode ELISA en phase liquide: cas des eaux de la rivière Agbado, Int. J. Biol. Chem. Sci., 5 (2011) 1476–1490.
  6. B. Ismail, S. Prayitno, M. Tayeb, Contamination of rice field water with sulfonylurea and phenoxy herbicides in the Muda Irrigation scheme, Kedah, Malaysia, Environ. Monit. Assess., 187 (2015) 406–414.
  7. S. Harris, K. Solomon, Human exposure to 2,4-dichlorophenoxyacetic acid following controlled activities on recently sprayed turf, J. Environ. Sci. Health., Part B, 27 (1992) 9–22.
  8. K. Hikmat, H. Aziz, Application of different advanced oxidation processes for the removal of chloroacetic acids using a planar falling film reactor, Chemosphere, 228 (2019) 377–383.
  9. K.H.H. Aziz, H. Miessner, S. Mueller, A. Mahyar, D. Kalass, D. Moeller, I. Khorshid, M.A.M. Rashid, Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor, J. Hazard. Mater., 343 (2018) 107–115.
  10. A. Chenchana, A. Nemamcha, H. Moumeni, J.M.D. Rodriguez, J. Arana, J.A. Navio, O.G. Diaz, E.P. Melian, Photodegradation of 2,4-dichlorophenoxyacetic acid over TiO2(B)/anatase nanobelts and Au-TiO2(B)/anatase nanobelts, Appl. Surf. Sci., 467–468 (2019) 1076–1087.
  11. M.R. Samarghandi, D. Nemattollahi, G. Asgari, R. Shokoohi, A. Ansari, A. Dargahi, Electrochemical process for 2,4-D herbicide removal from aqueous solutions using stainless steel 316 and graphite anodes: optimization using response surface methodology, Sep. Sci. Technol., 54 (2019) 478–493.
  12. P.K. Boruah, B. Sharma, N. Hussain, M.R. Das, Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: Investigation of the adsorption phenomenon and specific ion effect, Chemosphere, 168 (2017) 1058–1067.
  13. A.D. Marczewska, M. Blachnio, A.W. Marczewski, M. Seczkowska, B. Tarasiuk, Phenoxyacid pesticide adsorption on activated carbon equilibrium and kinetics, Chemosphere, 214 (2019) 349–360.
  14. V.O. Njoku, M. Asif, B.H. Hameed, 2,4-Dichlorophenoxyacetic acid adsorption onto coconut shell-activated carbon: isotherm and kinetic modeling, Desal. Water Treat., 55 (2015) 132–141.
  15. V.O. Njoku, B.H. Hameed, Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption, Chem. Eng. J., 173 (2011) 391–399.
  16. A. Pandiarajan, R. Kamaraj, S. Vasudevan, S. Vasudevan, OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modeling, and thermodynamic studies, Bioresour. Technol., 261 (2018) 329–341.
  17. M. Al Bahri, L. Calvo, M.A. Gilarranz, J.J. Rodriguez, Activated carbon from grape seeds upon chemical activation with phosphoric acid: application to the adsorption of diuron from water, Chem. Eng. J., 203 (2012) 348–356.
  18. M. Bahrami, M.J. Amiri, B. Beigzadeh, Adsorption of 2,4-dichlorophenoxyacetic acid using rice husk biochar granular activated carbon, and multi-walled carbon nanotubes, in a fixed bed column system, Water Sci. Technol., 78 (2018) 1812–1821.
  19. S.N. Trivedi, R.A. Kharkar, S.A. Mandavgane, 2,4-dichlorophenoxyacetic acid adsorption on adsorbent prepared from groundnut shell: effect of preparation conditions on equilibrium adsorption capacity, Arabian J. Chem., 12 (2019) 4541–4549.
  20. B.B. Tian, J.H. Zhou, F. Xie, Q.N. Guo, A.P. Zhang, X.Q. Wang, Q.Q. Yu, N. Li, H. Yang, Impact of surfactant and dissolved organic matter on uptake of atrazine in maize and its mobility in soil, J. Soils Sediments, 19 (2019) 599–608.
  21. A.E. Kurtoglu, G. Atun, Competitive adsorption of 2,4-dichlorophenoxyacetic acid herbicide and humic acid onto activated carbon for agricultural water management, Desal. Water Treat., 57 (2016) 25653–25666.
  22. L.C. Gonzalez-Marquez, A.M. Hansen, F.A. Gonzalez-Farias, Effect of mono and divalent salts on the conformation and composition of a humic acid and on atrazine adsorption, Environ. Sci. Pollut. Res., 25 (2018) 17509–17518.
  23. Y.Z. El-Nahhal, G. Lagaly, Salt effects on the adsorption of a pesticide on modified bentonites, Colloid Polym. Sci., 283 (2005) 968–974.
  24. J.K. Fatombi, T. Aminou, B. Lartiges, N. Topanou, R.G. Josse, Interaction of Cocos nucifera cream casein with humic, Water Sci. Technol., 66 (2012) 345–351.
  25. Z.H. Shahraki, H. Sharififard, A. Lashanizadegan, Grape stalks biomass as raw material for activated carbon production: synthesis, characterization and adsorption ability, Mater. Res. Express, 5 (2018) 055603.
  26. C.A. Mathias, P.B. Vilela, V.A. Becegato, A.T. Paulino, Adsorption kinetic, isotherm and thermodynamic of 2,4-dichlorophenoxyacetic acid herbicide in novel alternative natural adsorbents, Water Air Soil Pollut., 230 (2019) 276.
  27. J.K. Fatombi, S.A. Osseni, E.A. Idohou, I. Agani, D. Neumeyer, M. Verelst, R. Mauricot, T. Aminou, Characterization and application of alkali-soluble polysaccharide of Carica papaya seeds for removal of indigo carmine and congo red dyes from single and binary solutions, J. Environ. Chem. Eng., 7 (2019) 103343.
  28. K. Kusmierek, M. Szala, A. Swiatkowski, Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis, J. Taiwan Inst. Chem. Eng., 63 (2016) 371–378.
  29. J.K. Fatombi, E.A. Idohou, S.A. Osseni, I. Agani, D. Neumeyer, M. Verelst, R. Mauricot, T. Aminou, Adsorption of indigo carmine from aqueous solution by chitosan and chitosan/ activated carbon composite: kinetics, isotherms and thermodynamics studies, Fibers Polym., 20 (2019) 1820–1832.
  30. Lelifajri, M.A. Nawi, S. Sabar, Supriatno, W.I. Nawawi, Preparation of immobilized activated carbon-polyvinyl alcohol composite for the adsorptive removal of 2,4-dichlorophenoxyacetic acid, J. Water Process Eng., 25 (2018) 269–277.
  31. B.A.G. de Melo, F.L. Motta, M.H.A. Santana, Humic acids: structural properties and multiple functionalities for novel technological developments, Mater. Sci. Eng., C, 62 (2016) 967–974.
  32. E. Derakhshani, A. Naghizadeh, Optimization of humic acid removal by adsorption onto bentonite and montmorillonite nanoparticles, J. Mol. Liq., 259 (2018) 76–81.
  33. T. Zhou, L. Fang, X. Wang, M. Han, S. Zhang, R. Han, Adsorption of the herbicide 2,4-dichlorophenoxyacetic acid by Fe-crosslinked chitosan complex in batch mode, Desal. Water Treat., 70 (2017) 294–301.
  34. S. Lagergren, K. Svenska, About the theory of so-called adsorption of soluble substances, Vetenskapsakademiens Handlingar, 24 (1898) 1–39.
  35. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  36. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  37. H.K. Hue, L.V. Anh, D.B. Trong, Study of the adsorption of 2,4-dichlorophenoxyacetic acid from the aqueous solution onto activated carbon, Vietnam J. Chem., 56 (2018) 208–213.
  38. O. Kazak, Y.R. Eker, I. Akin, H. Bingol, A. Tor, Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution, Environ. Sci. Pollut. Res., 24 (2017) 23057–23068.
  39. Q. Li, J. Sun, T. Ren, L. Guo, Z. Yang, Q. Yang, H. Chen, Adsorption mechanism of 2,4-dichlorophenoxyacetic acid onto nitric acid modified activated carbon fiber, Environ. Technol., 39 (2018) 895–906.
  40. I. Langmuir, The adsorption of gases on plane surfaces of glass, Mica and Platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  41. H. Freundlich, W. Heller, The adsorption of cis-and transazobenzene, J. Am. Chem. Soc., 61 (1939) 2228–2230.
  42. M.I. Temkin, A.N. Bakh, Adsorption of hydrogen by palladium in the presence and absence of water, J. Phys. Chem., 5 (1934) 809.
  43. T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed-bed adsorbers, AIChE J., 20 (1974) 228–238.
  44. K.Y. Foo, B.H. Hameed, Insight into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  45. E.I. Unuabonah, M.O. Omorogie, N.A. Oladoja, Modeling in Adsorption: Fundamentals and Applications, in: Composite Nanoadsorbents Micro and Nano Technologies, Elsevier, Amsterdam, The Netherlands, 2019, pp. 85–118.
  46. C.H. Giles, T.H.M. Evan, S.N. Nakhwa, D. Smith, Studies in adsorption, Part XI, A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface area of solids, Surf. Act., 3 (1957) 457.
  47. S. Goldberg, M. Tabatabai, D.L. Sparks, Equation and models describing adsorption processes in soils, Chem. Process. Soil, 10 (2005) 489–517.
  48. B.H. Hameed, J.M. Salman, A.L. Ahmad, Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater., 163 (2009) 121–126.
  49. V.O. Njoku, K.Y. Foo, B.H. Hameed, Microwave assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid, Chem. Eng. J., 215–216 (2013) 383–388.
  50. V.O. Njoku, M.A. Islam, M. Asif, B.H. Hameed, Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4 activated langsat at empty fruit bunch, J. Environ. Manage., 154 (2015) 138–144.
  51. M.B. Andrade, T.R.T. Santos, M.F. Silva, M.F. Vieira, R. Bergamasco, S. Hamoudi, Graphene oxide impregnated with iron oxide nanoparticles for the removal of atrazine from the aqueous medium, Sep. Sci. Technol., 54 (2019) 2653–2670.
  52. K. Vermohlen, H. Lewandowski, H.D. Narres, M.J. Schwuger, Adsorption of polyelectrolytes onto oxides the influence of ionic strength, molar mass, and Ca2+ ions, Colloids Surf., A, 163 (2000) 45–53.
  53. Y. Liu, Is the free energy change of adsorption correctly calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
  54. X. Zhou, X. Zhou, The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation, Chem. Eng. Commun., 201 (2014) 1459–1467.
  55. I. Anastopoulos, G.Z. Kyzas, Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?, J. Mol. Liq., 218 (2016) 174–185.
  56. J.M. Salman, B.H. Hameed, Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon, Desalination, 256 (2010) 129–135.
  57. A.F. Hassan, Enhanced adsorption of 2,4-dichlorophenoxyacetic acid from aqueous medium by graphene oxide/alginate composites, Desal. Water Treat., 141 (2019) 187–196.
  58. A. Perez, R. Otero, A.R. Esquinas, J.R. Jimenez, J.M. Fernandez, Potential use of modified hydrotalcites as adsorbent of Bentazon and Metazachlor, Appl. Clay Sci., 141 (2017) 300–307.