References
- X. Yuan, S.I. Im, S.W. Choi, K.B. Lee, Removal of Cu(II) ions from
aqueous solutions using petroleum coke-derived microporous
carbon: investigation of adsorption equilibrium and kinetics,
Adsorption, 25 (2019) 1205–1218.
- W.W. Tang, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, C. Zhang,
B. Bin Huang, Impact of humic/fulvic acid on the removal of
heavy metals from aqueous solutions using nanomaterials:
a review, Sci. Total Environ., 468–469 (2014) 1014–1027.
- D. Mehta, S. Mazumdar, S.K. Singh, Magnetic adsorbents for
the treatment of water/wastewater-a review, J. Water Process
Eng., 7 (2015) 244–265.
- J. Gao, F. Liu, P. Ling, J. Lei, L. Li, C. Li, A. Li, High efficient
removal of Cu(II) by a chelating resin from strong acidic
solutions: complex formation and DFT certification, Chem.
Eng. J., 222 (2013) 240–247.
- M.R. Awual, T. Yaita, S.A. El-Safty, H. Shiwaku, S. Suzuki,
Y. Okamoto, Copper(II) ions capturing from water using ligand
modified a new type mesoporous adsorbent, Chem. Eng. J.,
221 (2013) 322–330.
- M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of
heavy metal ions from aqueous solutions by activated carbon
prepared from apricot stone, Bioresour. Technol., 96 (2005)
1518–1521.
- M.M. Rao, A. Ramesh, G.P.C. Rao, K. Seshaiah, Removal of
copper and cadmium from the aqueous solutions by activated
carbon derived from Ceiba pentandra hulls, J. Hazard. Mater.,
129 (2006) 123–129.
- S.O. Lesmana, N. Febriana, F.E. Soetaredjo, J. Sunarso, S. Ismadji,
Studies on potential applications of biomass for the separation
of heavy metals from water and wastewater, Biochem. Eng. J.,
44 (2009) 19–41.
- J.F. Duval, K.J. Wilkinson, H.P. Van Leeuwen, J. Buffle, Humic
substances are soft and permeable: evidence from their
electrophoretic mobilities, Environ. Sci. Technol., 39 (2005)
6435–6445.
- R.A. Saar, J.H. Weber, Comparison of spectrofluorometry and
ion-selective electrode potentiometry for determination of
complexes between fulvic acid and heavy-metal ions, Anal.
Chem., 52 (1980) 2095–2100.
- J.L. Xu, W.F. Tan, J. Xiong, M.X. Wang, L.C. Fang, L.K. Koopal,
Copper binding to soil fulvic and humic acids: NICA-Donnan
modeling and conditional affinity spectra, J. Colloid Interface
Sci., 473 (2016) 141–151.
- L. Dupont, E. Guillon, Removal of hexavalent chromium
with a lignocellulosic substrate extracted from wheat bran,
Environ. Sci. Technol., 37 (2003) 4235–4241.
- X.S. Wang, Z.Z. Li, C. Sun, Removal of Cr(VI) from aqueous
solutions by low-cost biosorbents: marine macroalgae and
agricultural by-products, J. Hazard. Mater., 153 (2008) 1176–1184.
- X.S. Wang, Z.Z. Li, S.R. Tao, Removal of chromium (VI) from
aqueous solution using walnut hull, J. Environ. Manage.,
90 (2009) 721–729.
- X.S. Wang, Y.P. Tang, S.R. Tao, Kinetics, equilibrium and
thermodynamic study on removal of Cr (VI) from aqueous
solutions using low-cost adsorbent Alligator weed, Chem.
Eng. J., 148 (2009) 217–225.
- D. Park, Y.S. Yun, J.M. Park, Studies on hexavalent chromium
biosorption by chemically-treated biomass of Ecklonia sp.,
Chemosphere, 60 (2005) 1356–1364.
- X.S. Wang, Z.P. Lu, H.H. Miao, W. He, H.L. Shen, Kinetics of
Pb (II) adsorption on black carbon derived from wheat residue,
Chem. Eng. J., 166 (2011) 986–993.
- J.J. Pignatello, S. Kwon, Y. Lu, Effect of natural organic substances
on the surface and adsorptive properties of environmental
black carbon (char): attenuation of surface activity by humic
and fulvic acids, Environ. Sci. Technol., 40 (2006) 7757–7763.
- X.S. Wang, H.H. Miao, W. He, H.L. Shen, Competitive
adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue
derived black carbon, J. Chem. Eng. Data, 56 (2011) 444–449.
- Y.P. Zhang, V.S.K. Adi, H.L. Huang, H.P. Lin, Z.H. Huang,
Adsorption of metal ions with biochars derived from biomass
wastes in a fixed column: adsorption isotherm and process
simulation, J. Ind. Eng. Chem., 76 (2019) 240–244.
- Z. Zhou, Z.Z. Xu, Q.J. Feng, D.H. Yao, J.G. Yu, D.S. Wang, S.Q. Lv,
Y.F. Liu, N. Zhou, M. Zhong, Effect of pyrolysis condition on
the adsorption mechanism of lead, cadmium and copper on
tobacco stem biochar, J. Cleaner Prod., 187 (2018) 996–1005.
- D.M. Zhou, Y.J. Wang, H.W. Wang, S.Q. Wang, J.M. Cheng,
Surface-modified nanoscale carbon black used as sorbents for
Cu(II) and Cd(II), J. Hazard. Mater., 174 (2010) 34–39.
- S.G. Wang, W.X. Gong, X.W. Liu, B.Y. Gao, Q.Y. Yue, Removal of
fulvic acids using the surfactant modified zeolite in a fixed-bed
reactor, Sep. Purif. Technol., 51 (2006) 367–373.
- Y. Muńoz-González, R. Arriagada-Acuňa, G. Sota-Garrido,
R. García-Lovera, Activated carbons from peach stones and
pine sawdust by phosphoric acid activation used in clarification
and decolorization processes, J. Chem. Technol. Biotechnol.,
84 (2009) 39–47.
- Y. Qiu, H. Cheng, C. Xu, G.D. Sheng, Surface characteristics
of crop-residue-derived black carbon and lead(II) adsorption,
Water Res., 42 (2008) 567–574.
- S.C. Xu, Organic Chemistry, Higher Education Press, Beijing,
China, 1983.
- X.H. Ding, W. Ma, X.M. Huang, W. Guo, R.Q. Wang, Y.C. Li, J.L.
Dai, Characteristics of copper sorption by various agricultural
soils in China and the effect of exogenic dissolved organic matter
on the sorption, Soil Sediment Contam., 27 (2018) 311–328.
- J.A. Leenheer, G.K. Brown, P. McCarthy, S.E. Cabaniss, Models
of metal binding structures in fulvic acid from the Suwanner
river, Georgia, Environ. Sci. Technol., 32 (1998) 2410–2416.
- J. Liu, W.Y. Cheng, X.Y. Yang, Y.C. Bao, Modification of
biochar with silicon by one-step sintering and understanding
of adsorption mechanism on copper ions, Sci. Total Environ.,
704 (2019), doi: 10.1016/j.scitotenv.2019.135252.
- U.K. Saha, C. Liu, M. Kozak, P.M. Huang, Kinetics of selenite
adsorption on hydroxyaluminum and hydroxyaluminosilicatemontmorillonite
complexes, Soil Sci. Soc. Am. J., 68 (2004)
1197–1209.
- T.T. Li, F.H. Song, J. Zhang, S.J. Tian, N.N. Huang, B.S. Xing,
Y.C. Bai, Experimental and modeling study of proton and
copper binding properties onto fulvic acid fractions using
spectroscopic techniques combined with two-dimensional
correlation analysis, Environ. Pollut., (2019), https://doi.
org/10.1016/j.envpol.2019.113465.
- Z.T. Wang, M.X. Cao, W.C. Cai, H.P. Zeng, The effect of humic
acid and fulvic acid on adsorption-desorption behavior of
copper and zinc in the yellow soil, AIP Conf. Proc., 1820 (2017)
040027, https://doi.org/10.1063/1.4977299.
- X.S. Wang, Z.Z. Li, C. Sun, A comparative study of removal of
Cu(II) from aqueous solutions by locally low-cost materials:
marine macroalgae and agricultural by-products, Desalination,
235 (2009) 146–159.
- H.J. Kim, S. Im, J.C. Kim, W.G. Hong, K. Shin, H.Y. Jeong,
Y.J. Hong, Phytic acid doped polyaniline nanofibers for
enhanced aqueous copper(II) adsorption capability, ACS Sustainable
Chem. Eng., 5 (2017) 6654–6664.
- S. Jiang, L. Huang, T.A.H. Nguyen, Y.S. Ok, V. Rudolph,
H. Yang, D. Zhang, Copper and zinc adsorption by softwood
and hardwood biochars under elevated sulphate-induced
salinity and acidic pH conditions, Chemosphere, 142 (2016)
64–71.
- P. Pavasant, R. Apiratikul, V. Sungkhum, P. Suthiparinyanont,
S. Wattanachira, T.F. Marhaba, Biosorption of Cu2+, Cd2+,
Pb2+, and Zn2+ using dried marine green macroalga Caulerpa
lentillifera, Bioresour. Technol., 97 (2006) 2321–2329.
- Y.J. Dai, K.X. Zhang, J.J. Li, Y. Jiang, Y.J. Chen, S. Tanaka,
Adsorption of copper and zinc onto carbon material in an
aqueous solution oxidized by ammonium peroxydisulphate,
Sep. Purif. Technol., 186 (2017) 255–263.
- S. Lagergren, About theory of so-called adsorption of soluble
substances, K. Sven. Vetenskapsakad. Andl., 24 (1898) 1–39.
- Y.S. Ho, G. Mckay. The kinetics of sorption of divalent metal
ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
- Y.S. Ho, J.C.Y. Ng, G. Mckay, Kinetics of pollutant sorption
by biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
- M.M. Abdallah, M.N. Ahmad, G. Walker, J.J. Leahy, Batch and
continuous systems for Zn, Cu, and Pb metal ions adsorption
on spent mushroom compost biochar, Ind. Eng. Chem. Res.,
58 (2019) 7296–7307.
- S.H. Chien, W.R. Clayton, Application of Elovich equation to
the kinetics of phosphate release and sorption in soils, Soil Sci.
Soc. Am. J., 44 (1980) 265–268.
- C.W. Cheung, J.F. Porter, G. McKay, Sorption kinetic analysis
for the removal of cadmium ions from effluents using bone
char, Water Res., 35 (2001) 605–612.
- W.J. Weber, J.C. Morris, Advances in Water Pollution Research:
Removal of Biologically Resistant Pollutants from Waste Waters
by Adsorption, Proceedings of International Conference on
Water Pollution Symposium, Vol. 2, Pergamon Press, Oxford,
1962, pp. 231–266.
- A.J. Kumar, R.P. Singh, D.F. Fu, C. Namasivayam, Comparison
of physical-and chemical-activated Jatropha curcas husk carbon
as an adsorbent for the adsorption of Reactive Red 2 from
aqueous solution, Desal. Water Treat., 95 (2017) 308–318.
- A.H. Sulaymon, W.M. Abood, Equilibrium and kinetic study
of the adsorption of reactive blue, red and yellow dyes onto
activated carbon and barley husk, Desal. Water Treat., 52 (2014)
5485–5493.