References

  1. X. Yuan, S.I. Im, S.W. Choi, K.B. Lee, Removal of Cu(II) ions from aqueous solutions using petroleum coke-derived microporous carbon: investigation of adsorption equilibrium and kinetics, Adsorption, 25 (2019) 1205–1218.
  2. W.W. Tang, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, C. Zhang, B. Bin Huang, Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review, Sci. Total Environ., 468–469 (2014) 1014–1027.
  3. D. Mehta, S. Mazumdar, S.K. Singh, Magnetic adsorbents for the treatment of water/wastewater-a review, J. Water Process Eng., 7 (2015) 244–265.
  4. J. Gao, F. Liu, P. Ling, J. Lei, L. Li, C. Li, A. Li, High efficient removal of Cu(II) by a chelating resin from strong acidic solutions: complex formation and DFT certification, Chem. Eng. J., 222 (2013) 240–247.
  5. M.R. Awual, T. Yaita, S.A. El-Safty, H. Shiwaku, S. Suzuki, Y. Okamoto, Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent, Chem. Eng. J., 221 (2013) 322–330.
  6. M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol., 96 (2005) 1518–1521.
  7. M.M. Rao, A. Ramesh, G.P.C. Rao, K. Seshaiah, Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls, J. Hazard. Mater., 129 (2006) 123–129.
  8. S.O. Lesmana, N. Febriana, F.E. Soetaredjo, J. Sunarso, S. Ismadji, Studies on potential applications of biomass for the separation of heavy metals from water and wastewater, Biochem. Eng. J., 44 (2009) 19–41.
  9. J.F. Duval, K.J. Wilkinson, H.P. Van Leeuwen, J. Buffle, Humic substances are soft and permeable: evidence from their electrophoretic mobilities, Environ. Sci. Technol., 39 (2005) 6435–6445.
  10. R.A. Saar, J.H. Weber, Comparison of spectrofluorometry and ion-selective electrode potentiometry for determination of complexes between fulvic acid and heavy-metal ions, Anal. Chem., 52 (1980) 2095–2100.
  11. J.L. Xu, W.F. Tan, J. Xiong, M.X. Wang, L.C. Fang, L.K. Koopal, Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra, J. Colloid Interface Sci., 473 (2016) 141–151.
  12. L. Dupont, E. Guillon, Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran, Environ. Sci. Technol., 37 (2003) 4235–4241.
  13. X.S. Wang, Z.Z. Li, C. Sun, Removal of Cr(VI) from aqueous solutions by low-cost biosorbents: marine macroalgae and agricultural by-products, J. Hazard. Mater., 153 (2008) 1176–1184.
  14. X.S. Wang, Z.Z. Li, S.R. Tao, Removal of chromium (VI) from aqueous solution using walnut hull, J. Environ. Manage., 90 (2009) 721–729.
  15. X.S. Wang, Y.P. Tang, S.R. Tao, Kinetics, equilibrium and thermodynamic study on removal of Cr (VI) from aqueous solutions using low-cost adsorbent Alligator weed, Chem. Eng. J., 148 (2009) 217–225.
  16. D. Park, Y.S. Yun, J.M. Park, Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp., Chemosphere, 60 (2005) 1356–1364.
  17. X.S. Wang, Z.P. Lu, H.H. Miao, W. He, H.L. Shen, Kinetics of Pb (II) adsorption on black carbon derived from wheat residue, Chem. Eng. J., 166 (2011) 986–993.
  18. J.J. Pignatello, S. Kwon, Y. Lu, Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids, Environ. Sci. Technol., 40 (2006) 7757–7763.
  19. X.S. Wang, H.H. Miao, W. He, H.L. Shen, Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon, J. Chem. Eng. Data, 56 (2011) 444–449.
  20. Y.P. Zhang, V.S.K. Adi, H.L. Huang, H.P. Lin, Z.H. Huang, Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: adsorption isotherm and process simulation, J. Ind. Eng. Chem., 76 (2019) 240–244.
  21. Z. Zhou, Z.Z. Xu, Q.J. Feng, D.H. Yao, J.G. Yu, D.S. Wang, S.Q. Lv, Y.F. Liu, N. Zhou, M. Zhong, Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar, J. Cleaner Prod., 187 (2018) 996–1005.
  22. D.M. Zhou, Y.J. Wang, H.W. Wang, S.Q. Wang, J.M. Cheng, Surface-modified nanoscale carbon black used as sorbents for Cu(II) and Cd(II), J. Hazard. Mater., 174 (2010) 34–39.
  23. S.G. Wang, W.X. Gong, X.W. Liu, B.Y. Gao, Q.Y. Yue, Removal of fulvic acids using the surfactant modified zeolite in a fixed-bed reactor, Sep. Purif. Technol., 51 (2006) 367–373.
  24. Y. Muńoz-González, R. Arriagada-Acuňa, G. Sota-Garrido, R. García-Lovera, Activated carbons from peach stones and pine sawdust by phosphoric acid activation used in clarification and decolorization processes, J. Chem. Technol. Biotechnol., 84 (2009) 39–47.
  25. Y. Qiu, H. Cheng, C. Xu, G.D. Sheng, Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption, Water Res., 42 (2008) 567–574.
  26. S.C. Xu, Organic Chemistry, Higher Education Press, Beijing, China, 1983.
  27. X.H. Ding, W. Ma, X.M. Huang, W. Guo, R.Q. Wang, Y.C. Li, J.L. Dai, Characteristics of copper sorption by various agricultural soils in China and the effect of exogenic dissolved organic matter on the sorption, Soil Sediment Contam., 27 (2018) 311–328.
  28. J.A. Leenheer, G.K. Brown, P. McCarthy, S.E. Cabaniss, Models of metal binding structures in fulvic acid from the Suwanner river, Georgia, Environ. Sci. Technol., 32 (1998) 2410–2416.
  29. J. Liu, W.Y. Cheng, X.Y. Yang, Y.C. Bao, Modification of biochar with silicon by one-step sintering and understanding of adsorption mechanism on copper ions, Sci. Total Environ., 704 (2019), doi: 10.1016/j.scitotenv.2019.135252.
  30. U.K. Saha, C. Liu, M. Kozak, P.M. Huang, Kinetics of selenite adsorption on hydroxyaluminum and hydroxyaluminosilicatemontmorillonite complexes, Soil Sci. Soc. Am. J., 68 (2004) 1197–1209.
  31. T.T. Li, F.H. Song, J. Zhang, S.J. Tian, N.N. Huang, B.S. Xing, Y.C. Bai, Experimental and modeling study of proton and copper binding properties onto fulvic acid fractions using spectroscopic techniques combined with two-dimensional correlation analysis, Environ. Pollut., (2019), https://doi. org/10.1016/j.envpol.2019.113465.
  32. Z.T. Wang, M.X. Cao, W.C. Cai, H.P. Zeng, The effect of humic acid and fulvic acid on adsorption-desorption behavior of copper and zinc in the yellow soil, AIP Conf. Proc., 1820 (2017) 040027, https://doi.org/10.1063/1.4977299.
  33. X.S. Wang, Z.Z. Li, C. Sun, A comparative study of removal of Cu(II) from aqueous solutions by locally low-cost materials: marine macroalgae and agricultural by-products, Desalination, 235 (2009) 146–159.
  34. H.J. Kim, S. Im, J.C. Kim, W.G. Hong, K. Shin, H.Y. Jeong, Y.J. Hong, Phytic acid doped polyaniline nanofibers for enhanced aqueous copper(II) adsorption capability, ACS Sustainable Chem. Eng., 5 (2017) 6654–6664.
  35. S. Jiang, L. Huang, T.A.H. Nguyen, Y.S. Ok, V. Rudolph, H. Yang, D. Zhang, Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions, Chemosphere, 142 (2016) 64–71.
  36. P. Pavasant, R. Apiratikul, V. Sungkhum, P. Suthiparinyanont, S. Wattanachira, T.F. Marhaba, Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera, Bioresour. Technol., 97 (2006) 2321–2329.
  37. Y.J. Dai, K.X. Zhang, J.J. Li, Y. Jiang, Y.J. Chen, S. Tanaka, Adsorption of copper and zinc onto carbon material in an aqueous solution oxidized by ammonium peroxydisulphate, Sep. Purif. Technol., 186 (2017) 255–263.
  38. S. Lagergren, About theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Andl., 24 (1898) 1–39.
  39. Y.S. Ho, G. Mckay. The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
  40. Y.S. Ho, J.C.Y. Ng, G. Mckay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
  41. M.M. Abdallah, M.N. Ahmad, G. Walker, J.J. Leahy, Batch and continuous systems for Zn, Cu, and Pb metal ions adsorption on spent mushroom compost biochar, Ind. Eng. Chem. Res., 58 (2019) 7296–7307.
  42. S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44 (1980) 265–268.
  43. C.W. Cheung, J.F. Porter, G. McKay, Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char, Water Res., 35 (2001) 605–612.
  44. W.J. Weber, J.C. Morris, Advances in Water Pollution Research: Removal of Biologically Resistant Pollutants from Waste Waters by Adsorption, Proceedings of International Conference on Water Pollution Symposium, Vol. 2, Pergamon Press, Oxford, 1962, pp. 231–266.
  45. A.J. Kumar, R.P. Singh, D.F. Fu, C. Namasivayam, Comparison of physical-and chemical-activated Jatropha curcas husk carbon as an adsorbent for the adsorption of Reactive Red 2 from aqueous solution, Desal. Water Treat., 95 (2017) 308–318.
  46. A.H. Sulaymon, W.M. Abood, Equilibrium and kinetic study of the adsorption of reactive blue, red and yellow dyes onto activated carbon and barley husk, Desal. Water Treat., 52 (2014) 5485–5493.