References

  1. M.L. Sall, A.K.D. Diaw, D. Gningue-Sall, A. Chevillot-Biraud, N. Oturan, M.A. Oturan, C. Fourdrin, D. Huguenot, J.J. Aaron, Removal of lead and cadmium from aqueous solutions by using 4-amino-3-hydroxynaphthalene sulfonic acid-doped polypyrrole films, Environ. Sci. Pollut. Res. Int., 25 (2018) 8581–8591.
  2. F. Omidi, M. Behbahani, M. Kalate Bojdi, S.J. Shahtaheri, Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica, J. Magn. Magn. Mater., 395 (2015) 213–220.
  3. Jarup L, Hazards of heavy metal contamination, Br. Med. Bull., 68 (2003) 167–182.
  4. E. Keshmirizadeh, S. Yousefi, M.K. Rofouei, An investigation on the new operational parameter effective in Cr(VI) removal efficiency: a study on electrocoagulation by alternating pulse current, J. Hazard. Mater., 190 (2011) 119–124.
  5. D. Kauspediene, J. Snukiskis, A. Gefeniene, Kinetics of cadmium(II) sorption by an iminodiacetic ion exchanger in the presence of a nonionic surfactant, Desalination, 154 (2003) 67–77.
  6. X. Tang, H. Wang, M. Hou, L. Song, C. Zhou, H. Zhao, L. Shi, Highly efficient adsorption of cadmium(II) onto durable coconut fiber residue, Desal. Water Treat., 57 (2015) 15098–15107.
  7. H.A. Qdais, H. Moussa, Removal of heavy metals from wastewater by membrane processes: a comparative study, Desalination, 164 (2004) 105–110.
  8. Q.R. Zhang, B.C. Pan, B.J. Pan, W.M. Zhang, K. Jia, Q.X. Zhang, Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr (HPO3S)2, Environ. Sci. Technol., 42 (2008) 4140–4145.
  9. L.D. Barreira, P.F. Lito, B.M. Antunes, M. Otero, Z. Lin, J. Rocha, E. Pereira, A.C. Duarte, C.M. Silva, Effect of pH on cadmium (II) removal from aqueous solution using titanosilicate ETS-4, Chem. Eng. J., 155 (2009) 728–735.
  10. T.K. Naiya, A.K. Bhattcharya, S.K. Das, Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina, J. Colloid Interface Sci., 333 (2009) 14–26.
  11. S.J. Dai, D.Z. Wei, L.M. Bai, D.Q. Zhou, Y.J. Wang, W.G. Liu, Removing cadmium from cadmium-containing electroplating wastewater by biosorption-sedimentation, Chin. J. Nonferrous Met., 18 (2008) 1945–1950.
  12. A.J. Feitz, S.H. Joo, J. Guan, Q. Sun, D.L. Sedlak, T. David Waite, Oxidative transformation of contaminants using colloidal zerovalent iron, Colloids Surf. A, 265 (2005) 88–94.
  13. H.F. Cheng, W.P. Xu, J.L. Liu, H.J. Wang, Y.Q. He, G. Chen, Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal micro electrolysis, J. Hazard. Mater., 146 (2007) 385–392.
  14. F. Akbal, S. Camci, Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 269 (2011) 214–222.
  15. K. Yin, I.M.C. Lo, H.R. Dong, P. Rao, M.S.K. Mak, Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: aggregation, sedimentation, and contaminant desorption, J. Hazard. Mater., 227–228 (2012) 118–125.
  16. A. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications, J. Chem. Technol. Biotechnol., 84 (2009) 1747–1755.
  17. X.B. Zhang, W.Y. Dong, F.Y. Sun, W. Yang, J. Dong, Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter, J. Hazard. Mater., 276 (2014) 77–87.
  18. L. Sun, C. Wang, M. Ji, F. Wang, Achieving biodegradability enhancement and acute biotoxicity removal through the treatment of pharmaceutical wastewater using a combined internal electrolysis and ultrasonic irradiation technology, Front. Environ. Sci. Eng. China, 5 (2011) 481–487.
  19. L.T. Pan, J.F. Wu, J. Wang, Treatment of high mass concentration coking wastewater using enhancement catalytic iron carbon internal-electrolysis, J. Jiangsu Univ., 31 (2010) 348–352.
  20. J.H. Luo, G.Y. Song, J.Y. Liu, G. Qian, Z.P. Xu, Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface, J. Colloid Interface Sci., 435 (2014) 21–25.
  21. G. Wang, X.-J. Xu, J.-J. Yang, K.-Y. Gai, R. Nie, X. Li, T.-Z. Guan, K.-R. Wang, Treatment of cupric wastewater by electrolysisenhanced micro electrolysis coupled method, Chin. J. Nonferrous Met., 23 (2013) 2936–2941.
  22. J.J. Yang, X.J. Xu, G. Wang, P. Wang, Z.Y. Han, T.Z. Guan, R. Tian, Treatment of zinc and lead smelting wastewater containing heavy metals by combined process of micro-electrolysis with flocculation, Chin. J. Nonferrous Met., 22 (2012) 2125–2132.
  23. L. Pan, J. Wang, W. Wang, J. Wu, B. Yu, Preparation method of iron carbon micro electrolysis filler, CN:200910198816[P], 2011.12.07.
  24. Y.Z. Jin, Y.F. Zhang, W. Li, Experimental study on microelectrolysis technology for, pharmaceutical wastewater treatment, J. Zhejiang Univ. Sci. B, 3 (2002) 401–404.
  25. Y.Z. Jin, Y.F. Zhang, W. Li, Micro-electrolysis technology for industrial wastewater treatment, J. Environ. Sci., 15 (2003) 334–338.
  26. Y.P. Yang, X.H. Xu, H.F. Chen, Treatment of chitin-producing wastewater by micro-electrolysis-contact oxidization, J. Zhejiang Univ. Sci., 5 (2004) 436–440.
  27. GB 8978–1996, Integrated Wastewater Discharge Standard, China, 1998.
  28. GB 7475–87, Water Quality-Determination of Copper, Zinc, Lead and Cadmium-Atomic Absorption Spectrometry, China, 1987.
  29. K. Feng, Y.Y. Gu, L.M. Ma, Research on optimum coagulation conditions and pH variation of acidic chemical wastewater pretreated by catalyzed iron and coagulation process, Water Resour. Water Eng., 24 (2013) 50–53.
  30. M.H. Zhang, Z.F. Ye, Q.L. Zhao, G. Hua, J.M. Ma, Y.Q. Wang, D.L. Zhang, Pretreatment of TNT red water by iron-carbon micro-electrolysis, Chin. J. Environ. Eng., 6 (2012) 3115–3120.
  31. A.L. Wu, J.G. Bao, L.J. Gong, Pretreatment of auto electrocoating wastewater by Fe-C micro-electrolysis, Chin. J. Environ. Eng., 8 (2014) 3843–3847.
  32. B. Lai, H.K. Qin, Y.X. Zhou, Y.D. Song, J.Y. Cheng, L.D. Sun, Wastewater from the condensation and drying section of ABS was pretreated by micro electrolysis, Environ. Sci., 32 (2011) 1055–1059.
  33. H. Tekin, O. Bilkay, S.S. Ataberk, T.H. Balta, I. Haluk Ceribasi, F. Dilek Sanin, F.B. Dilek, U. Yetis, Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater, J. Hazard. Mater., 136 (2006) 258–265.
  34. L.Y. Chai, H. Chang, Y.Y. Wang, Y.D. Shu, J. Li, L. Yuan, P. Wang, Y. Fang, K. Zhao, Thermodynamic equilibria of hydroxyl complex ions in Cd2+-H2O system, Chin. J. Nonferrous Met., 17 (2007) 487–491.
  35. R. Rangsivek, M.R. Jekel, Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment, Water Res., 39 (2005) 4153–4163.
  36. N. Melitas, O. Chuffe-Moscoso, J. Farrell, Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects, Environ. Sci. Technol., 35 (2001) 3948–3953.
  37. T.G. Li, G. Wang, X.J. Xu, R. Nie, V.A. Khue, Q. Zhan, J. Zhao, Importance of external electric field in development of electrocatalysis promotion internal micro-electrolysis for copper(II) removal, Oxid. Commun, 39 (2016) 291–304.
  38. D.J. Gaspar, A.S. Lea, M.H. Engelhard, D.R. Baer, R. Miehr, P.G. Tratnyek, Evidence for localization of reaction upon reduction of carbon tetrachloride by granular iron, Langmuir, 18 (2002) 7688–7693.
  39. J.H. Fan, W.Y. Xu, T.Y. Gao, L.M. Ma, Stability analysis of the wastewater treatment by the catalyzed Fe-Cu process, Environ. Pollut. Control, 28 (2006) 783–785.
  40. Y.Y. Wang, L.Y. Chai, Q.W. Wang, Y.D. Shu, The research on coordination equilibria between heavy metal ions (Zn2+, Cu2+, Cd2+, Pb2+) and aqueous hydroxyl complex ions, Chin. J. Nonferrous Met., 6 (2008) 183–191.