References

  1. C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack, J. Catal., 122 (1990) 178–192.
  2. M.A. Meetani, A. Alaidaros, S. Hisaindee, A. Alhamadat, R. Selvaraj, F. Al Marzouqi, M.A. Rauf, Photocatalytic degradation of acetaminophen in aqueous solution by Zn0.2Cd0.8S catalyst and visible radiation, Desal. Water Treat., 138 (2019) 270–279.
  3. L. Daneshvar, A. Nezamzadeh-Ejhieh, Photocatalytic activity of ZnO nanoparticles towards tinidazole degradation: experimental design by response surface methodology (RSM), Desal. Water Treat., 141 (2019) 364–376.
  4. A. Rahmani, H. Rahimzadeh, S. Beirami, Photocatalytic degradation of phenolic compound (phenol, resorcinol, and cresol) by titanium dioxide photocatalyst on ordered mesoporous carbon (CMK-3) support under UV irradiation, Desal. Water Treat., 144 (2019) 224–232.
  5. L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-Based photocatalysts, Energy Environ. Sci., 11 (2018) 1362–1391.
  6. N. Jiang, Z. Xiu, Z. Xie, H. Li, G. Zhao, W. Wang, Y. Wu, X. Hao, Reduced graphene oxide–CdS nanocomposites with enhanced visible-light photoactivity synthesized using ionic-liquid precursors, New J. Chem., 38 (2014) 4312–4320.
  7. J. Fu, B. Chang, Y. Tian, F. Xi, X. Dong, Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism, J. Mater. Chem. A, 1 (2013) 3083–3090.
  8. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  9. Z. Yi, Y. Zeng, H. Wu, X. Chen, Y. Fan, H. Yang, Y. Tang, Y. Yi, J. Wang, P. Wu, Synthesis, surface properties, crystal structure and dye-sensitized solar cell performance of TiO2 nanotube arrays anodized under different parameters, Results Phys., 15 (2019) 102609.
  10. Z. Yi, X. Li, H. Wu, X. Chen, H. Yang, Y. Tang, Y. Yi, J. Wang, P. Wu, Fabrication of ZnO@Ag3PO4 core-shell nanocomposite arrays as photoanodes and their photoelectric properties, Nanomaterials, 9 (2019) 1254.
  11. L. Zhang, Q. Liang, P. Yang, Y. Huang, Y. Liu, H. Yang, J. Yan, ZIF-8 derived ZnO/Zn6Al2O9/Al2O3 nanocomposite with excellent photocatalytic performance under simulated sunlight irradiation, New J. Chem., 43 (2019) 2990–2999.
  12. S. Wang, H. Yang, Z. Yi, X. Wang, Enhanced photocatalytic performance by hybridization of Bi2WO6 nanoparticles with honeycomb-like porous carbon skeleton, J. Environ. Manage., 248 (2019) 109341.
  13. X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, Recyclable nanoscale zero-valent iron-doped g-C3N4/MoS2 for efficient photocatalysis of RhB and Cr(VI) driven by visible light, ACS Sustainable Chem. Eng., 4 (2016) 4055–4063.
  14. M. Kaur, S.K. Mehta, S.K. Kansal, Visible light-driven photocatalytic degradation of ofloxacin and malachite green dye using cadmium sulfide nanoparticles, J. Environ. Chem. Eng., 6 (2018) 3631–3639.
  15. Y. Chen, Y. Liang, T. Li, C. Lin, L. Lin, M. Zhao, Y. Wang, H. Chen, J. Zeng, Y. Zhang, Hydrothermal fabrication of sandwichstructured silver sulfide/ferroferric oxide/silver metavanadate graphene microtube using capillary effect for enhancing photocatalytic degradation and disinfection, J. Colloid Interface Sci., 555 (2019) 759–769.
  16. M. Jourshabani, Z. Shariatinia, G. Achari, C.H. Langford, A. Badiei, Facile synthesis of NiS2 nanoparticles ingrained in a sulfur-doped carbon nitride framework with enhanced visiblelight photocatalytic activity: two functional roles of thiourea, J. Mater. Chem. A, 6 (2018) 13448–13466.
  17. T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, Review on metal sulfide-based Z-scheme photocatalysts, ChemCatChem, 11 (2019) 1394–1411.
  18. H.-B. Huang, K. Yu, J.-T. Wang, J.-R. Zhou, H.-F. Li, J. Lü, R. Cao, Controlled growth of ZnS/ZnO heterojunctions on porous biomass carbons via one-step carbothermal reduction enables visible-light-driven photocatalytic H2 production, Inorg. Chem. Front., 6 (2019) 2035–2042.
  19. R. Jiang, J. Yao, H. Zhu, Y. Fu, Y. Guan, L. Xiao, G. Zeng, Effective decolorization of congo red in aqueous solution by adsorption and photocatalysis using novel magnetic alginate/γ-Fe2O3/CdS nanocomposite, Desal. Water Treat., 52 (2014) 238–247.
  20. L. Yu, Y. Tang, X. Liu, C. Ma, P. Huo, J. Pan, W. Shi, Y. Yan, Hydrothermal synthesis of the cauliflower-like CdS microspheres to enhance solar photocatalytic degradation of oxytetracycline hydrochloride, Desal. Water Treat., 55 (2015) 2144–2154.
  21. H.R. Pouretedal, S.D. Mirghaderi, M.H. Keshavarz, Decolorization kinetic studies of congo red catalyzed by Co-doped CdS nanoparticles, Desal. Water Treat., 20 (2010) 220–227.
  22. L. Zou, H. Wang, X. Wang, High efficient photodegradation and photocatalytic hydrogen production of CdS/BiVO4 heterostructure through Z-scheme process, ACS Sustainable Chem. Eng., 5 (2017) 303–309.
  23. Y.V. Marathe, M.M.V. Ramanna, V.S. Shrivastava, Synthesis and characterization of nanocrystalline CdS thin films grown by chemical bath deposition at different molarities for removal of methylene blue, Desal. Water Treat., 51 (2013) 5813–5820.
  24. S. Shenoy, E. Jang, T.J. Park, C.S. Gopinath, K. Sridharan, Cadmium sulfide nanostructures: influence of morphology on the photocatalytic degradation of erioglaucine and hydrogen generation, Appl. Surf. Sci., 483 (2019) 696–705.
  25. K. Wu, Z. Chen, H. Lv, H. Zhu, C.L. Hill, T. Lian, Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod–metal tip heterostructures, J. Am. Chem. Soc., 136 (2014) 7708–7716.
  26. Y. Ben-Shahar, F. Scotognella, I. Kriegel, L. Moretti, G. Cerullo, E. Rabani, U. Banin, Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods, Nat. Commun., 7 (2016) 10413.
  27. N. Bao, L. Shen, T. Takata, K. Domen, Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light, Chem. Mater., 20 (2008) 110–117.
  28. H.-B. Huang, Y. Wang, W.-B. Jiao, F.-Y. Cai, M. Shen, S.-G. Zhou, H.-L. Cao, J. Lü, R. Cao, Lotus-leaf-derived activated-carbon-supported nano-CdS as energy-efficient photocatalysts under visible irradiation, ACS Sustainable Chem. Eng., 6 (2018) 7871–7879.
  29. H.-B. Huang, Y. Wang, F.-Y. Cai, W.-B. Jiao, N. Zhang, C. Liu, H.-L. Cao, J. Lü, Photodegradation of rhodamine B over biomassderived activated carbon-supported CdS nanomaterials under visible irradiation, Front. Chem., 5 (2017) 00123, doi: 10.3389/ fchem.2017.00123.
  30. H.-L. Cao, F.-Y. Cai, K. Yu, Y.-Q. Zhang, J. Lü, R. Cao, Photocatalytic degradation of tetracycline antibiotics over CdS/nitrogen-doped–carbon composites derived from in situ carbonization of metal–organic frameworks, ACS Sustainable Chem. Eng., 7 (2019) 10847–10854.
  31. J.-Y. Yu, Z.-J. Chen, X.-Y. Zeng, C. Liu, F.-Y. Cai, H.-L. Cao, J. Lü, Morphological control of CdS@AC nanocomposites for enhanced photocatalytic degradation of tetracycline antibiotics under visible irradiation, Inorg. Chem. Commun., 95 (2018) 134–138.
  32. H.-B. Huang, N. Zhang, K. Yu, Y.-Q. Zhang, H.-L. Cao, J. Lü, R. Cao, One-step carbothermal synthesis of robust CdS@BPC photocatalysts in the presence of biomass porous carbons, ACS Sustainable Chem. Eng., 7 (2019) 16835–16842.
  33. Y.V. Marathe, V.S. Shrivastava, Effective removal of nonbiodegradable methyl orange dye by using CdS/activated carbon nanocomposite as a photocatalyst, Desal. Water Treat., 53 (2015) 1316–1323.
  34. W. Xing, L. Ni, X. Liu, Y. Luo, Z. Lu, Y. Yan, P. Huo, Effect of metal ion (Zn2+, Bi3+, Cr3+, and Ni2+)-doped CdS/halloysite nanotubes (HNTs) photocatalyst for the degradation of tetracycline under visible light, Desal. Water Treat., 53 (2015) 794–805.
  35. N. Ma, A. Chen, Z. Bian, Y. Yang, H. Wang, In situ synthesis of a cadmium sulfide/reduced graphene oxide/bismuth Z-scheme oxyiodide system for enhanced photocatalytic performance in chlorinated paraben degradation, Chem. Eng. J., 359 (2019) 530–541.
  36. M. Mahanthappa, N. Kottam, S. Yellappa, Enhanced photocatalytic degradation of methylene blue dye using CuS/ CdS nanocomposite under visible light irradiation, Appl. Surf. Sci., 475 (2019) 828–838.
  37. B. Han, S. Liu, Y.-J. Xu, Z.-R. Tang, 1D CdS nanowire–2D BiVO4 nanosheet heterostructures toward photocatalytic selective fine-chemical synthesis, RSC Adv., 5 (2015) 16476–16483.
  38. L. Zou, H. Wang, C. Wu, L. Li, G. Yuan, X. Wang, Construction of all-solid-state Z-scheme 2D BiVO4/Ag/CdS composites with robust photoactivity and stability, Appl. Surf. Sci., 498 (2019) 143900.
  39. N. Clament Sagaya Selvam, Y.G. Kim, D.J. Kim, W.-H. Hong, W. Kim, S.H. Park, W.-K. Jo, Reduced graphene oxidemediated Z-scheme BiVO4/CdS nanocomposites for boosted photocatalytic decomposition of harmful organic pollutants, Sci. Total Environ., 635 (2018) 741–749.
  40. M. Ohta, S. Hirai, Thermoelectric properties of NdGd1+xS3 prepared by CS2 sulfurization, J. Electron. Mater., 38 (2009) 1287–1292.
  41. J.B. Gruber, R.P. Leavitt, C.A. Morrison, Absorption spectra, energy levels, and crystal-field analysis of trivalent neodymium in the γ phase of neodymium sesquisulfide (γ‐Nd2S3), J. Chem. Phys., 79 (1983) 1664–1668.
  42. J.R. Henderson, M. Muramoto, J.B. Gruber, R. Menzel, Optical spectrum of single-crystal Nd2S3, J. Chem. Phys., 52 (1970) 2311–2314.
  43. P. Yang, M.K. Lü, C.F. Song, D. Xu, D.L. Yuan, F. Gu, Co-doping effect of CaS and Nd2S3 nanocrystallites on luminescence properties of sol–gel SiO2 xerogel, Mater. Chem. Phys., 91 (2005) 253–256.
  44. S.V. Degtyarev, A.A. Man’shina, A.V. Kurochkin, D.V. Zhuzhel’skii, Y.G. Grigor’ev, Y.S. Tver’yanovich, Glass formation and luminescence of glasses in the Ga2S3–GeS2–Nd2S3 system, Glass Phys. Chem., 27 (2001) 209–213.
  45. Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral., 85 (2000) 543–556.
  46. Z.U. Dzhabua, T.O. Dadiani, A.V. Gigineishvili, M.Y. Stamateli, K.D. Davitadze, G.N. Iluridze, Optical and photoelectric properties of pure and cadmium-and lead-doped neodymium sesquisulfide thin films, Phys. Solid State, 48 (2006) 1481–1485.
  47. D. Lang, Q. Xiang, G. Qiu, X. Feng, F. Liu, Effects of crystalline phase and morphology on the visible light photocatalytic H2-production activity of CdS nanocrystals, Dalton Trans., 43 (2014) 7245–7253.
  48. D. Tan, W. Fan, W. Xiong, H. Sun, A. Li, W. Deng, C. Meng, Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents: the role of pore volume, Eur. Polym. J., 48 (2012) 705–711.
  49. X. Yu, X. An, A. Genç, M. Ibáñez, J. Arbiol, Y. Zhang, A. Cabot, Cu2ZnSnS4–PtM (M = Co, Ni) Nanoheterostructures for photocatalytic hydrogen evolution, J. Phys. Chem. C, 119 (2015) 21882–21888.
  50. H. Yang, S.V. Kershaw, Y. Wang, X. Gong, S. Kalytchuk, A.L. Rogach, W.Y. Teoh, Shuttling photoelectrochemical electron transport in tricomponent CdS/rGO/TiO2 nanocomposites, J. Phys. Chem. C, 117 (2013) 20406–20414.
  51. H. Yang, W. Fan, A. Vaneski, A.S. Susha, W.Y. Teoh, A.L. Rogach, Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: intricate effects of size-dependency and interfacial contact on photoconversion efficiencies, Adv. Funct. Mater., 22 (2012) 2821–2829.