References

  1. The Eurostat Dissemination Database, Available at: https:// ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1& language=en&pcode=ten00030&plugin=1 (accessed: 22.03.2019)
  2. M. Kalisz, Forecasts of changes in sewage sludge management, Water Supply Sewerage, 3 (2007) 30–32 (in Polish).
  3. A. Kelessidis, A.S. Stasinakis, Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries, Waste Manage., 32 (2012) 1186–1195.
  4. Resolution No. 88 of the Council of Ministers of 1 July 2016 on the National Waste Management Plan 2022, Monitor Polski No. 88, Item 784 (in Polish).
  5. M. Smol, J. Kulczycka, A. Henclik, K. Gorazda, Z. Wzorek, The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy, J. Cleaner Prod., 95 (2015) 45–54.
  6. J. Bujny, M. Maśliński, A coherent concept for sludge management is needed, Munic. Overv., 8 (2018) 46–48.
  7. J. Bień, Selected Aspects of Thermal Utilization of Municipal Sewage Sludge, European Social Fund. Available at: http:// www.plan-rozwoju.pcz.pl/wyklady/ener_srod/ener_bien.pdf (accessed: 12.11.2018 r.) (in Polish).
  8. Regulation of the Minister of Environment of 9th of December 2014 on Catalogue of Waste (J. of L 2014 it. 1923) (in Polish).
  9. K.L. Lin, C.Y. Lin, Hydration characteristics of waste sludge ash utilized as raw cement material, Cem. Concr. Res., 35 (2005) 1999–2007.
  10. A. Głowacka, T. Rucińska, J. Kiper, The slag original from the process of sewage sludge incineration selected properties characteristic, E3S Web Conf., 22 (2017) 1–8.
  11. K. Gorazda, Z. Kowalski, Z. Wzorek, From sewage sludge ash to calcium phosphate fertilizers, Polish J. Chem. Technol., 14 (2012) 54–58.
  12. A. Białowiec, W. Janczukowicz, M. Krzemieniewski, Possibilities of management of waste fly ashes from sewage sludge thermal treatment in the aspect of legal regulations, Ann. Set Environ. Prot., 11 (2009) 959–971.
  13. H. Weigand, M. Bertau, W. Hübner, F. Bohndick, A. Bruckert, RecoPhos: full-scale fertilizer production from sewage sludge ash, Waste Manage., 33 (2013) 540–544.
  14. S. Donatello, D. Tong, C.R. Cheeseman, Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA), Waste Manage., 30 (2010) 1634–1642.
  15. Y. Suzuki, T. Murakami, A. Kitajima, Development of an advanced sewage sludge incinerator, “turbocharged fluidized bed incinerator”, Synth. English Ed., 7 (2014) 12–21.
  16. E. Levlin, M. Löwén, K. Stark, Phosphorus Recovery from Sludge Incineration Ash and Supercritical Water Oxidation Residues with Use of Acid and Base, Proceedings of a Polish-Swedish Seminar, 2004, pp. 10–25.
  17. N. Gil-Lalaguna, J.L. Sánchez, M.B. Murillo, G. Gea, Use of sewage sludge combustion ash and gasification ash for hightemperature desulphurization of different gas streams, Fuel, 141 (2015) 99–108.
  18. A.B. Hernandez, J.H. Ferrasse, P. Chaurand, H. Saveyn, D. Borschneck, N. Roche, Mineralogy and leachability of gasified sewage sludge solid residues, J. Hazard. Mater., 191 (2011) 219–227.
  19. J. Kiper, The possibilities of natural development of ash-sludge blends, Ecol. Eng., 18 (2017) 74–82.
  20. O. Krüger, A. Grabner, C. Adam, Complete survey of German sewage sludge ash, Environ. Sci. Technol., 48 (2014) 11811–11818.
  21. M. Łukawska, Speciation analysis of phosphorus in sewage sludge after thermal utilization of sludge, Eng. Prot. Environ., 17 (2014) 433–439.
  22. L.M. Ottosen, G.M. Kirkelund, P.E. Jensen, Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum, Chemosphere, 91 (2013) 963–969.
  23. R. Parés Viader, P.E. Jensen, L.M. Ottosen, T.P. Thomsen, J. Ahrenfeldt, H. Hauggaard-Nielsen, Comparison of phosphorus recovery from incineration and gasification sewage sludge ash, Water Sci. Technol., 75 (2017) 1251–1260.
  24. M. Severin, J. Breuer, M. Rex, J. Stemann, Ch. Adam, H. Van den Weghe, M. Kücke, Phosphate fertilizer value of heat treated sewage sludge ash, Plant, Soil Environ., 60 (2014) 555–561.
  25. Grzebisz, Fertilizing Cultivated Plants 1. Fundamentals of Fertilization, State Agricultural and Forest Publishing, Poland, 2008, pp. 240–243.
  26. P. Schjønning, S. Elmholt, B.T. Christensen, Soil Quality Management – Concepts and Terms, In: Managing Soil Quality: Challenges in Modern Agriculture, CABI Publishing, United Kingdom, 2009, pp. 1–15.
  27. A. Lag-Brotons, I. Gómez, J. Navarro-Pedreño, A.M. Mayoral, M.D. Curt, Sewage sludge compost use in bioenergy production – a case study on the effects on Cynara cardunculus L energy crop, J. Cleaner Prod., 79 (2014) 32–40.
  28. B. Kołodziej, M. Stachyra, J. Antonkiewicz, E. Bielińska, J. Wiśniewski, The effect of harvest frequency on yielding and quality of energy raw material of reed canary grass grown on municipal sewage sludge, Biomass Bioenergy, 85 (2016) 363–370.
  29. I. Lewandowski, A. Kicherer, Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus, Eur. J. Agron., 6 (1997) 163–177.
  30. R. Pude, Anbau und Ertraege von Miscanthus in Europa, Miscanthus, Materials of the Polish-German Conference on the Use of Chinese Reeds, Połczyn Zdrój, Szczecin-Expo Promotion Office, Poland, 27–28 of September 2000.
  31. P. Carver, P. Spencer, C. Maryan, General Background on the Plant. Available at: http://www.ienica.net/crops/miscanthus. html (accessed 11.09.2008)
  32. E. Schwarz, K.U. Greef, J.M. Schnung, Investigation into the Establishment and Biomass Formation of Miscanthus × giganteus under Different Environmental Conditions, Landbauforschung Völkenrode, Scientific Communications of the Federal Agricultural Research Center (FAL), Germany, 1995.
  33. A. Iżewska, The Usefulness of Composts from Municipal Sewage Sludge for the Fertilization of Sugar Miscanthus (Miscantus sacchariflorus (Maxim.) Hack.) ZUT, Szczecin, 2009, pp. 1–108 (in Polish).
  34. B. Kołodziej, J. Antonkiewicz, D. Sugier, Miscanthus × giganteus as a biomass feedstock grown on municipal sewage sludge, Ind. Crops Prod., 81 (2016) 72–82.
  35. D.G. Christian, A.B. Riche, N.E. Yates, Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests, Ind. Crops Prod., 28 (2008) 320–327.
  36. E. Kalembasa, D. Malinowska, The content of selected elements in biomass of Miscanthus sacchariflorus and in soil at diverse doses of nitrogen, Acta Agrophys., 15 (2010) 315–322.
  37. J. Antonkiewicz, B. Kołodziej, E.J. Bielińska, A. Popławska, The possibility of using sewage sludge for energy crop cultivation exemplified by reed canary grass and giant Miscanthus, Soil Sci. Annu., 70 (2019) 21–33.
  38. J. Wierzbowska, S. Sienkiewicz, P. Sternik, M.K. Busse, Using ash from incineration of municipal sewage sludge to fertilize Virginia Fanpetals, Ecol. Chem. Eng., 22 (2015) 497–507.
  39. A. Fernando, J.S. Oliveira, Effects of Growth, Productivity and Biomass Quality of Miscanthus × giganteus of Soil Contaminated with Heavy Metals, W.P.M. Van Swaaij, T. Fjällström, P. Helm, A. Grassi A, Eds., Biomass for Energy, Industry and Climate Protection: Proceedings of the 2nd World Biomass Conference, ETA-Florence e WIP-Munich, pp. 387–390.
  40. V. Pidlisnyuk, T. Stefanovska, E.E. Lewis, L.E. Erickson, L.C. Davis, Miscanthus as a productive biofuel crop for phytoremediation, Crit. Rev. Plant Sci., 33 (2014) 1–19.