References

  1. K. Akansha, D. Chakraborty, S.G. Sachan, Decolorization and degradation of methyl orange by Bacillus stratosphericus SCA1007, Biocatal. Agric. Biotechnol., 18 (2019), doi: 10.1016/j. bcab.2019.101044 (In Press).
  2. N. Bi, H. Zheng, Y. Zhu, W. Jiang, B. Liang, Visible-light-driven photocatalytic degradation of non-azo dyes over Ag2O and its acceleration by the addition of an azo dye, J. Environ. Chem. Eng., 6 (2018) 3150–3160.
  3. Z. Kiayi, T.B. Lotfabad, A. Heidarinasab, F. Shahcheraghi, Microbial degradation of azo dye carmoisine in aqueous medium using Saccharomyces cerevisiae ATCC 9763, J. Hazard. Mater., 373 (2019) 608–619.
  4. M.O.A. Pacheco-Alvarez, A. Picos, T. Perez-Segura, J.M. Peralta- Hernandez, Proposal for highly efficient electrochemical discoloration and degradation of azo dyes with parallel arrangement electrodes, J. Electroanal. Chem., 838 (2019) 195–203.
  5. B. Szadkowski, A. Marzec, J. Rogowski, W. Maniukiewicz, M. Zaborski, Insight into the formation mechanism of azo dye-based hybrid colorant: physico-chemical properties and potential applications, Dyes Pigm., 167 (2019) 236–244.
  6. B. Merzouk, B. Gourich, A. Sekki, K. Madani, C. Vial, M. Barkaoui, Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process, Chem. Eng. J., 149 (2009) 207–214.
  7. T.A. Nguyen, R.S. Juang, Treatment of waters and wastewaters containing sulfur dyes: a review, Chem. Eng. J., 219 (2013) 109–117.
  8. L.L. Zhai, Z.S. Bai, Y. Zhu, B.J. Wang, W.Q. Luo, Fabrication of chitosan microspheres for efficient adsorption of methyl orange, Chin. J. Chem. Eng., 26 (2018) 657–666.
  9. A.A.A. Darwish, M. Rashad, H.A. AL-Aoh, Methyl orange adsorption comparison on nanoparticles: isotherm, kinetics, and thermodynamic studies, Dyes Pigm., 160 (2019) 563–571.
  10. M.H. Zhou, H. Sarkka, M. Sillanpaa, A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes, Sep. Purif. Technol., 78 (2011) 290–297.
  11. V. Deneva, A. Lycka, S. Hristova, A. Crochet, K.M. Fromm, L. Antonov, Tautomerism in azo dyes: border cases of azo and hydrazo tautomers as possible NMR reference compounds, Dyes Pigm., 165 (2019) 157–163.
  12. L. Fu, Y.N. Bai, Y.Z. Lu, J. Ding, D. Zhou, R.J. Zeng, Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example, J. Hazard. Mater., 364 (2019) 264–271.
  13. Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X.J. Zhang, Z. Gu, Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles, Chemosphere, 144 (2016) 1530–1535.
  14. S. Martinez-Lopez, C. Lucas-Abellan, A. Serrano-Martinez, M.T. Mercader-Ros, N. Cuartero, P. Navarro, S. Perez, J.A. Gabaldon, V.M. Gomez-Lopez, Pulsed light for a cleaner dyeing industry: azo dye degradation by an advanced oxidation process driven by pulsed light, J. Cleaner Prod., 217 (2019) 757–766.
  15. V. Innocenzi, M. Prisciandaro, M. Centofanti, F. Vegliò, Comparison of performances of hydrodynamic cavitation in combined treatments based on hybrid induced advanced Fenton process for degradation of azo-dyes, J. Environ. Chem. Eng., 7 (2019), doi: 10.1016/j.jece.2019.103171 (in press).
  16. H.A. Yusuf, Z.M. Redha, S.J. Baldock, P.R. Fielden, N.J. Goddard, An analytical study of the electrochemical degradation of methyl orange using a novel polymer disk electrode, Microelectron. Eng., 149 (2016) 31–36.
  17. N.P. Shetti, S.J. Malode, R.S. Malladi, S.L. Nargun, S.S. Shukla, T.M. Aminabhavi, Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode, Microchem. J., 146 (2019) 387–392.
  18. J. Fan, Y. Guo, J. Wang, M. Fan, Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles, J. Hazard. Mater., 166 (2009) 904–910.
  19. Z.U. Khan, A. Khan, Y. Chen, A.U. Khan, N.S. Shah, N. Muhammad, B. Murtaza, K. Tahir, F.U. Khan, P.Y. Wan, Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic azo dyes using AuNPs/GC as modified paste electrode, J. Alloy. Compd., 725 (2017) 869–876.
  20. J. Li, H. Liu, X. Cheng, Q. Chen, Y. Xin, Z. Ma, W. Xu, J. Ma, N. Ren, Preparation and characterization of palladium/polypyrrole/ foam nickel electrode for electrocatalytic hydrodechlorination, Chem. Eng. J., 225 (2013) 489–498.
  21. J.J. Li, C. Luan, Y.Q. Cui, H.X. Zhang, L. Wang, H. Wang, Z.H. Zhang, B. Zhao, H.W. Zhang, X.Y. Zhang, X.W. Cheng, Preparation and characterization of palladium/polyaniline/ foamed nickel composite electrode for electrocatalytic dechlorination, Sep. Purif. Technol., 211 (2019) 198–206.
  22. Y. Liu, L. Liu, J. Shan, J. Zhang, Electrodeposition of palladium and reduced graphene oxide nanocomposites on foamnickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol, J. Hazard. Mater., 290 (2015) 1–8.
  23. Z. Peng, Z. Yu, L. Wang, Y. Hou, Y. Shi, L. Wu, Z. Li, Facile synthesis of Pd–Fe nanoparticles modified Ni foam electrode and its behaviors in electrochemical reduction of tetrabromobisphenol A, Mater. Lett., 166 (2016) 300–303.
  24. C.H. Nguyen, C.-C. Fu, R.S. Juang, Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways, J. Cleaner Prod., 202 (2018) 413–427.
  25. H. Xu, Y. Xiao, M. Xu, H. Cui, L. Tan, N. Feng, X. Liu, G. Qiu, H. Dong, J. Xie, Microbial synthesis of Pd-Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction, Nanotechnology, 30 (2019) 065607, doi: 10.1088/1361-6528/aaf2a6.
  26. Y. Wu, L. Gan, S. Zhang, B. Jiang, H. Song, W. Li, Y. Pan, A. Li, Enhanced electrocatalytic dechlorination of parachloronitrobenzene based on Ni/Pd foam electrode, Chem. Eng. J., 316 (2017) 146–153.
  27. Y. Song, J. Song, M. Shang, W. Xu, S. Liu, B. Wang, Q. Lu, Y. Su, Hydrodynamics and mass transfer performance during the chemical oxidative polymerization of aniline in microreactors, Chem. Eng. J., 353 (2018) 769–780.
  28. J.M. Skowroński, J. Urbaniak, Nickel foam/polyaniline-based carbon/palladium composite electrodes for hydrogen storage, Energy Convers. Manage., 49 (2008) 2455–2460.
  29. L. Shen, X. Huang, Electrochemical polymerization of aniline in a protic ionic liquid with high proton activity, Synth. Met., 245 (2018) 18–23.
  30. L. Sun, W. He, S. Li, L. Shi, Y. Zhang, J. Liu, The high performance mushroom-like Pd@SnO2/Ni foam electrode for H2O2 reduction in alkaline media, J. Power Sources, 395 (2018) 386–394.
  31. Z. Lou, J. Zhou, M. Sun, J. Xu, K. Yang, D. Lv, Y. Zhao, X. Xu, MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs, Chem. Eng. J., 352 (2018) 549–557.
  32. E. Pargoletti, V. Pifferi, L. Falciola, G. Facchinetti, A. Re Depaolini, E. Davoli, M. Marelli, G. Cappelletti, A detailed investigation of MnO2 nanorods to be grown onto activated carbon. High efficiency towards aqueous methyl orange adsorption/degradation, Appl. Surf. Sci., 472 (2019) 118–126.
  33. F.A. Gutierrez, M.D. Rubianes, G.A. Rivas, New bioanalytical platform based on the use of avidin for the successful exfoliation of multi-walled carbon nanotubes and the robust anchoring of biomolecules. Application for hydrogen peroxide biosensing, Anal. Chim. Acta, 1065 (2019) 12–20.
  34. J. Li, W. Qin, A freestanding all-solid-state polymeric membrane Cu2+-selective electrode based on three-dimensional graphene sponge, Anal. Chim. Acta, 1068 (2019) 11–17.
  35. H. Zhao, Y. Wu, H. Nan, Y. Du, G. Yang, G. Wang, H. Chen, H. Wei, H. Lin, Preparation and catalytic mechanism of N-TiO2 based different heterojunction catalytic materials, Mater. Res. Express, 6 (2019) 085020.
  36. N. Ajermoun, A. Farahi, S. Lahrich, M. Bakasse, S. Saqrane, M.A. El Mhammedi, Electrocatalytic activity of the metallic silver electrode for thiamethoxam reduction: application for the detection of a neonicotinoid in tomato and orange samples, J. Sci. Food Agric., 99 (2019) 4407–4413.
  37. A. Melicchio, E.P. Favvas, Preparation and characterization of graphene oxide as a candidate filler material for the preparation of mixed matrix polyimide membranes, Surf. Coat. Technol., 349 (2018) 1058–1068.
  38. R.P. Ramasamy, Z. Ren, M.M. Mench, J.M. Regan, Impact of initial biofilm growth on the anode impedance of microbial fuel cells, Biotechnol. Bioeng., 101 (2008) 101–108.
  39. K. El Hassani, D. Kalnina, M. Turks, B.H. Beakou, A. Anouar, Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst, Sep. Purif. Technol., 210 (2019) 764–774.