References
- K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry,
Ullmann’s Encyclopedia of Industrial Chemistry, VCH,
Weinheim, New York, 1972, pp. 314–315.
- S. Flint, T. Markle, S. Thompson, E. Wallace, Bisphenol
A exposure, effects, and policy: a wildlife perspective,
J. Environ. Manage., 104 (2012) 19–34.
- J. Michałowicz, Bisphenol A - sources, toxicity and biotransformation,
Environ. Toxicol. Pharmacol., 37 (2014) 738–758.
- Y. Zhang, W. Cui, W. An, L. Liu, Y. Liang, Y. Zhu, Combination of
photoelectrocatalysis and adsorption for removal of bisphenol
A over TiO2-graphene hydrogel with a 3D network structure,
Appl. Catal., B, 221 (2018) 36–46.
- A.O. Kondrakov, A.N. Ignatev, F.H. Frimmel, S. Bräse,
H. Horn, A.L. Revelsky, Formation of genotoxic quinones
during bisphenol A degradation by TiO2 photocatalysis and UV
photolysis: a comparative study, Appl. Catal., B, 160–161 (2014)
106–114.
- B. Erjavec, P. Hudoklin, K. Perc, T. Tišler, M.S. Dolenc,
A. Pintar, Glass fiber-supported TiO2 photocatalyst: efficient
mineralization and removal of toxicity/estrogenicity of bisphenol
A and its analogs, Appl. Catal., B, 183 (2016) 149–158.
- L. Luo, Y. Yang, M. Xiao, L. Bian, B. Yuan, Y. Liu, F. Jiang,
X. Pan, A novel biotemplated synthesis of TiO2/wood charcoal
composites for synergistic removal of bisphenol A by adsorption
and photocatalytic degradation, Chem. Eng. J., 262 (2015)
1275–1283.
- S.-D. Yoon, E.-S. Kim, Y.-H. Yun, Chemical durability and
photocatalyst activity of acid-treated ceramic TiO2 nanocomposites,
J. Ind. Eng. Chem., 64 (2018) 230–236.
- X. Zhao, P. Du, Z. Cai, T. Wang, J. Fu, W. Liu, Photocatalysis
of bisphenol A by an easy-setting titania/titanate composite:
effects of water chemistry factors, degradation pathway and
theoretical calculation, Environ. Pollut., 232 (2018) 580–590.
- K. Davididou, E. Hale, N. Lane, E. Chatzisymeon, A. Pichavant,
J.-F. Hochepied, Photocatalytic treatment of saccharin and
bisphenol-A in the presence of TiO2 nanocomposites tuned by
Sn(IV), Catal. Today, 287 (2017) 3–9.
- L.J. Luo, J. Li, J. Dai, L. Xia, C.J. Barrow, H. Wang, J. Jegatheesan,
M. Yang, Bisphenol A removal on TiO2-MoS2-reduced graphene
oxide composite by adsorption and photocatalysis, Process Saf.
Environ. Prot., 112 (2017) 274–279.
- Z. Cheng, X. Quan, J. Xiang, Y. Huang, Y. Xu, Photocatalytic
degradation of bisphenol A using an integrated system of a
new gas-liquid-solid circulating fluidized bed reactor and
micrometer Gd-doped TiO2 particles, J. Environ. Sci., 24 (2012)
1317–1326.
- P.S. Yap, T.T. Lim, M. Lim, M. Srinivasan, Synthesis and
characterization of nitrogen-doped TiO2/AC composite for the
adsorption-photocatalytic degradation of aqueous bisphenol-A
using solar light, Catal. Today, 151 (2010) 8–13.
- P.S. Yap, T.T. Lim, Effect of aqueous matrix species on synergistic
removal of bisphenol-A under solar irradiation using nitrogendoped
TiO2/AC composite, Appl. Catal., B, 101 (2011) 709–717.
- X. Wang, T.T. Lim, Solvothermal synthesis of C-N codoped
TiO2 and photocatalytic evaluation for bisphenol A degradation
using a visible-light irradiation LED photoreactor, Appl. Catal.,
B, 100 (2010) 355–364.
- J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X. Dong, P. Chen,
G. Jiang, Z. Wang, F. Dong, Nitrogen defect structure and
NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4, Chem. Eng. J., 379 (2020) 122282.
- L.F. Chiang, R. Doong, Cu-TiO2 nanorods with enhanced
ultraviolet and visible-light photoactivity for bisphenol A
degradation, J. Hazard. Mater., 277 (2014) 84–92.
- C.S. Kim, J.W. Shin, Y.H. Cho, H.D. Jang, H.S. Byun, T.O. Kim,
Synthesis, and characterization of Cu/N-doped mesoporous
TiO2 visible light photocatalysts, Appl. Catal., A, 455 (2013)
211–218.
- J. Yang, J. Dai, J. Li, Synthesis, characterization, and degradation
of bisphenol A using Pr, N co-doped TiO2 with highly visible
light activity, Appl. Surf. Sci., 257 (2011) 8965–8973.
- X. Hao, M. Li, L. Zhang, K. Wang, C. Liu, Photocatalyst TiO2/WO3/GO nano-composite with a high efficient photocatalytic
performance for BPA degradation under visible light and solar
light illumination, J. Ind. Eng. Chem., 55 (2017) 140–148.
- E.B. Simsek, B. Kilic, M. Asgin, A. Akan, Graphene oxidebased
heterojunction TiO2-ZnO catalysts with an outstanding
photocatalytic performance for bisphenol-A, ibuprofen and
flurbiprofen, J. Ind. Eng. Chem., 59 (2018) 115–126.
- X. Li, W. Zhang, W. Cui, J. Li, Y. Sun, G. Jiang, H. Huang,
Y. Zhang, F. Dong, Reactant activation and photocatalysis
mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: a
combined experimental and theoretical investigation, Chem.
Eng. J., 370 (2019) 1366–1375.
- W. Cui, L. Chen, J. Li, Y. Zhou, Y. Sun, G. Jiang, S.C. Lee,
F. Dong, Ba-vacancy induces semiconductor-like photocatalysis
on insulator BaSO4, Appl. Catal., B, 253 (2019) 293–299.
- T.B. Nguyen, C.P. Huang, R. Doong, Photocatalytic degradation
of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under
visible light, Sci. Total Environ., 646 (2019) 745–756.
- A. Iwaszuk, M. Nolan, Lead oxide-modified TiO2 photocatalyst:
tuning light absorption and charge carrier separation by lead
oxidation state, Catal. Sci. Technol., 3 (2013) 2000–2008.
- D.S. Bhachu, S. Sathasivam, C.J. Carmalt, I.P. Parkin, PbO-modified
TiO2 thin films: a route to visible light photocatalysts,
Langmuir, 30 (2014) 624–630.
- M. Mohammadikish, K. Zamani, Controlled construction of
uniform pompon-like Pb-ICP microarchitectures as a precursor
for PbO semiconductor nanoflakes, Adv. Powder Technol.,
29 (2018) 2813–2821.
- I. Mukhopadhyay, S. Ghosh, M. Sharon, Surface modification
by the potential delay technique to obtain a photoactive PbO
film, Surf. Sci., 384 (1997) 234–239.
- D. Pavlov, Semiconductor mechanism of the processes during
electrochemical oxidation of PbO to PbO2, J. Electroanal. Chem.,
118 (1981) 167–185.
- V.N. Suryawanshi, A.S. Varpe, M.D. Deshpande, Band gap
engineering in PbO nanostructured thin films by Mn doping,
Thin Solid Films, 645 (2018) 87–92.
- G. Li, H.Y. Yip, K.H. Wang, C. Hu, J. Qu, P.K. Wong,
Photoelectrochemical degradation of methylene blue with
β-PbO2 electrodes driven by visible light irradiation, J. Environ.
Sci., 23 (2011) 998–1003.
- W. Stumm, Chemistry of Solid-Water Interface: Processes at the
Mineral-Water and Particle-Water Interface in Natural Systems,
John Wiley & Sons, New York, 1992, p. 347.
- C.J. Liang, H.W. Su, Identification of sulfate and hydroxyl
radicals in thermally activated persulfate, Ind. Eng. Chem. Res.,
48 (2009) 5558–5562.
- H. Lin, J. Wu, H. Zhang, Degradation of bisphenol A in aqueous
solution by a novel electro/Fe3+/peroxydisulfate process, Sep.
Purif. Technol., 117 (2013) 18–23.
- G. Zhang, Y. Xue, R. Sue, Q. Wang, W. Zhang, One-pot
microwave-assisted synthesis of Zn0.9Fe0.1S photocatalyst and
its performance for the removal of bisphenol A, J. Photochem.
Photobiol., A, 356 (2018) 665–672.
- W.S. Chen, Y.C. Shih, Mineralization of aniline in aqueous
solution by sono-activated peroxydisulfate enhanced with PbO
semiconductor, Chemosphere, 239 (2020) 124686.
- A. Bendavid, P.J. Martin, A. Jamting, H. Takikawa, Structural
and optical properties of titanium oxide thin films deposited by
filtered arc deposition, Thin Solid Films, 355–356 (1999) 6–11.
- H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P.J. Martin,
Properties of titanium oxide film prepared by reactive cathodic
vacuum arc deposition, Thin Solid Films, 348 (1999) 145–151.
- S.K. Maji, N. Mukherjee, A.K. Dutta, D.N. Srivastava,
P. Paul, B. Karmakar, A. Mondal, B. Adhikary, Deposition
of nanocrystalline CuS thin film from a single precursor:
structural, optical and electrical properties, Mater. Chem. Phys.,
130 (2011) 392–397.
- V. Štengl, T.M. Grygar, The simplest way to Iodine-doped
anatase for photocatalysts activated by visible light, Int.
J. Photoenergy, 2011 (2011) 685935–685948.
- E. Kamaraj, S. Somasundaram, K. Balasubramani, M.P. Eswaran,
R. Muthuramalingam, S. Park, Facile fabrication of CuO-Pb2O3
nanophotocatalysts for efficient degradation of Rose Bengal
dye under visible light irradiation, Appl. Surf. Sci., 433 (2018)
206–212.
- Y.R. Denny, T. Firmansyah, Isnaeni, S. Aritonang, A.M. Kartina,
Evaluation of band gap energy and surface roughness for
tin indium zinc oxide thin films by atomic force microscopy
and electron spectroscopy, IOP Conf. Ser.: Mater. Sci. Eng.,
343 (2018) 012006.
- M. Singh, A. Yadav, S. Kumar, P. Agarwal, Annealing induced
electrical conduction and band gap variation in thermally
reduced graphene oxide films with different sp2/sp3 fraction,
Appl. Surf. Sci., 326 (2015) 236–242.
- H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang,
Macroscopic polarization enhancement promoting photo- and
piezoelectric-induced charge separation and molecular oxygen
activation, Angew. Chem. Int. Ed., 56 (2017) 11860–11864.
- F. Chen, H. Huang, L. Guo, Y. Zhang, The role of polarization in
photocatalysis, Angew. Chem. Int. Ed., 58 (2019) 10061–10073.
- L. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu,
M. Batmunkh, Y. Zhang, T. Ma, Surface-halogenation-induced
atomic-site activation and local charge separation for superb
CO2 photoreduction, Adv. Mater., 31 (2019) 1900546.
- F. Chen, H. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han, T. Ma,
Thickness-dependent facet junction control of layered BiOIO3
single crystals for highly efficient CO2 photoreduction, Adv.
Funct. Mater., 28 (2018) 1804284.
- M. Salavati-Niasari, F. Mohandes, F. Davar, Preparation of PbO
nanocrystals via decomposition of lead oxalate, Polyhedron,
28 (2009) 2263–2267.
- L.M. Droessler, H.E. Assender, A.A.R. Watt, Thermally
deposited lead oxides for thin-film photovoltaics, Mater. Lett.,
71 (2012) 51–53.
- Y.-C. Lai, J.-C. Lin, C. Lee, Nucleation and growth of highly
oriented lead titanate thin-films prepared by a sol-gel method,
Appl. Surf. Sci., 125 (1998) 51–57.
- F.-Y. Liu, J.-H. Lin, Y.-M. Dai, L.-W. Chen, S.-T. Huang, T.-W. Yeh,
J.-L. Chang, C.-C. Chen, Preparation of perovskites PbBiO2I/PbO exhibiting visible-light photocatalytic activity, Catal.
Today, 314 (2018) 28–41.
- C.-H. Park, M.-S. Won, Y.-H. Oh, Y.-G. Son, An XPS study
and electrical properties of Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS)
structures according to the substrate temperature of the PbO
buffer layer, Appl. Surf. Sci., 252 (2005) 1988–1997.
- D.A. Zatsepin, D.W. Boukhvalov, N.V. Gavrilov, A.F. Zatsepin,
V.Ya. Shur, A.A. Esin, S.S. Kim, E.Z. Kurmaev, Soft electronic
structure modulation of surface (thin-film) and bulk (ceramics)
morphologies of TiO2-host by Pb-implantation: XPS-and-DFT
characterization, Appl. Surf. Sci., 400 (2017) 110–117.
- P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of
inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data,
17 (1988) 1027–1284.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical
review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous
solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
- D. Tromans, Temperature and pressure-dependent solubility of
oxygen in water: a thermodynamic analysis, Hydrometallurgy,
48 (1998) 327–342.
- J.F. Gomes, A. Lopes, M. Gmurek, R.M. Quinta-Ferreira,
R.C. Martins, Study of the influence of the matrix characteristics
over the photocatalytic ozonation of parabens using Ag-TiO2,
Sci. Total Environ., 646 (2019) 1468–1477.