References

  1. K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, Ullmann’s Encyclopedia of Industrial Chemistry, VCH, Weinheim, New York, 1972, pp. 314–315.
  2. S. Flint, T. Markle, S. Thompson, E. Wallace, Bisphenol A exposure, effects, and policy: a wildlife perspective, J. Environ. Manage., 104 (2012) 19–34.
  3. J. Michałowicz, Bisphenol A - sources, toxicity and biotransformation, Environ. Toxicol. Pharmacol., 37 (2014) 738–758.
  4. Y. Zhang, W. Cui, W. An, L. Liu, Y. Liang, Y. Zhu, Combination of photoelectrocatalysis and adsorption for removal of bisphenol A over TiO2-graphene hydrogel with a 3D network structure, Appl. Catal., B, 221 (2018) 36–46.
  5. A.O. Kondrakov, A.N. Ignatev, F.H. Frimmel, S. Bräse, H. Horn, A.L. Revelsky, Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis: a comparative study, Appl. Catal., B, 160–161 (2014) 106–114.
  6. B. Erjavec, P. Hudoklin, K. Perc, T. Tišler, M.S. Dolenc, A. Pintar, Glass fiber-supported TiO2 photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs, Appl. Catal., B, 183 (2016) 149–158.
  7. L. Luo, Y. Yang, M. Xiao, L. Bian, B. Yuan, Y. Liu, F. Jiang, X. Pan, A novel biotemplated synthesis of TiO2/wood charcoal composites for synergistic removal of bisphenol A by adsorption and photocatalytic degradation, Chem. Eng. J., 262 (2015) 1275–1283.
  8. S.-D. Yoon, E.-S. Kim, Y.-H. Yun, Chemical durability and photocatalyst activity of acid-treated ceramic TiO2 nanocomposites, J. Ind. Eng. Chem., 64 (2018) 230–236.
  9. X. Zhao, P. Du, Z. Cai, T. Wang, J. Fu, W. Liu, Photocatalysis of bisphenol A by an easy-setting titania/titanate composite: effects of water chemistry factors, degradation pathway and theoretical calculation, Environ. Pollut., 232 (2018) 580–590.
  10. K. Davididou, E. Hale, N. Lane, E. Chatzisymeon, A. Pichavant, J.-F. Hochepied, Photocatalytic treatment of saccharin and bisphenol-A in the presence of TiO2 nanocomposites tuned by Sn(IV), Catal. Today, 287 (2017) 3–9.
  11. L.J. Luo, J. Li, J. Dai, L. Xia, C.J. Barrow, H. Wang, J. Jegatheesan, M. Yang, Bisphenol A removal on TiO2-MoS2-reduced graphene oxide composite by adsorption and photocatalysis, Process Saf. Environ. Prot., 112 (2017) 274–279.
  12. Z. Cheng, X. Quan, J. Xiang, Y. Huang, Y. Xu, Photocatalytic degradation of bisphenol A using an integrated system of a new gas-liquid-solid circulating fluidized bed reactor and micrometer Gd-doped TiO2 particles, J. Environ. Sci., 24 (2012) 1317–1326.
  13. P.S. Yap, T.T. Lim, M. Lim, M. Srinivasan, Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption-photocatalytic degradation of aqueous bisphenol-A using solar light, Catal. Today, 151 (2010) 8–13.
  14. P.S. Yap, T.T. Lim, Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogendoped TiO2/AC composite, Appl. Catal., B, 101 (2011) 709–717.
  15. X. Wang, T.T. Lim, Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiation LED photoreactor, Appl. Catal., B, 100 (2010) 355–364.
  16. J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X. Dong, P. Chen, G. Jiang, Z. Wang, F. Dong, Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4, Chem. Eng. J., 379 (2020) 122282.
  17. L.F. Chiang, R. Doong, Cu-TiO2 nanorods with enhanced ultraviolet and visible-light photoactivity for bisphenol A degradation, J. Hazard. Mater., 277 (2014) 84–92.
  18. C.S. Kim, J.W. Shin, Y.H. Cho, H.D. Jang, H.S. Byun, T.O. Kim, Synthesis, and characterization of Cu/N-doped mesoporous TiO2 visible light photocatalysts, Appl. Catal., A, 455 (2013) 211–218.
  19. J. Yang, J. Dai, J. Li, Synthesis, characterization, and degradation of bisphenol A using Pr, N co-doped TiO2 with highly visible light activity, Appl. Surf. Sci., 257 (2011) 8965–8973.
  20. X. Hao, M. Li, L. Zhang, K. Wang, C. Liu, Photocatalyst TiO2/WO3/GO nano-composite with a high efficient photocatalytic performance for BPA degradation under visible light and solar light illumination, J. Ind. Eng. Chem., 55 (2017) 140–148.
  21. E.B. Simsek, B. Kilic, M. Asgin, A. Akan, Graphene oxidebased heterojunction TiO2-ZnO catalysts with an outstanding photocatalytic performance for bisphenol-A, ibuprofen and flurbiprofen, J. Ind. Eng. Chem., 59 (2018) 115–126.
  22. X. Li, W. Zhang, W. Cui, J. Li, Y. Sun, G. Jiang, H. Huang, Y. Zhang, F. Dong, Reactant activation and photocatalysis mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: a combined experimental and theoretical investigation, Chem. Eng. J., 370 (2019) 1366–1375.
  23. W. Cui, L. Chen, J. Li, Y. Zhou, Y. Sun, G. Jiang, S.C. Lee, F. Dong, Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4, Appl. Catal., B, 253 (2019) 293–299.
  24. T.B. Nguyen, C.P. Huang, R. Doong, Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light, Sci. Total Environ., 646 (2019) 745–756.
  25. A. Iwaszuk, M. Nolan, Lead oxide-modified TiO2 photocatalyst: tuning light absorption and charge carrier separation by lead oxidation state, Catal. Sci. Technol., 3 (2013) 2000–2008.
  26. D.S. Bhachu, S. Sathasivam, C.J. Carmalt, I.P. Parkin, PbO-modified TiO2 thin films: a route to visible light photocatalysts, Langmuir, 30 (2014) 624–630.
  27. M. Mohammadikish, K. Zamani, Controlled construction of uniform pompon-like Pb-ICP microarchitectures as a precursor for PbO semiconductor nanoflakes, Adv. Powder Technol., 29 (2018) 2813–2821.
  28. I. Mukhopadhyay, S. Ghosh, M. Sharon, Surface modification by the potential delay technique to obtain a photoactive PbO film, Surf. Sci., 384 (1997) 234–239.
  29. D. Pavlov, Semiconductor mechanism of the processes during electrochemical oxidation of PbO to PbO2, J. Electroanal. Chem., 118 (1981) 167–185.
  30. V.N. Suryawanshi, A.S. Varpe, M.D. Deshpande, Band gap engineering in PbO nanostructured thin films by Mn doping, Thin Solid Films, 645 (2018) 87–92.
  31. G. Li, H.Y. Yip, K.H. Wang, C. Hu, J. Qu, P.K. Wong, Photoelectrochemical degradation of methylene blue with β-PbO2 electrodes driven by visible light irradiation, J. Environ. Sci., 23 (2011) 998–1003.
  32. W. Stumm, Chemistry of Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, John Wiley & Sons, New York, 1992, p. 347.
  33. C.J. Liang, H.W. Su, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 48 (2009) 5558–5562.
  34. H. Lin, J. Wu, H. Zhang, Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/peroxydisulfate process, Sep. Purif. Technol., 117 (2013) 18–23.
  35. G. Zhang, Y. Xue, R. Sue, Q. Wang, W. Zhang, One-pot microwave-assisted synthesis of Zn0.9Fe0.1S photocatalyst and its performance for the removal of bisphenol A, J. Photochem. Photobiol., A, 356 (2018) 665–672.
  36. W.S. Chen, Y.C. Shih, Mineralization of aniline in aqueous solution by sono-activated peroxydisulfate enhanced with PbO semiconductor, Chemosphere, 239 (2020) 124686.
  37. A. Bendavid, P.J. Martin, A. Jamting, H. Takikawa, Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition, Thin Solid Films, 355–356 (1999) 6–11.
  38. H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P.J. Martin, Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition, Thin Solid Films, 348 (1999) 145–151.
  39. S.K. Maji, N. Mukherjee, A.K. Dutta, D.N. Srivastava, P. Paul, B. Karmakar, A. Mondal, B. Adhikary, Deposition of nanocrystalline CuS thin film from a single precursor: structural, optical and electrical properties, Mater. Chem. Phys., 130 (2011) 392–397.
  40. V. Štengl, T.M. Grygar, The simplest way to Iodine-doped anatase for photocatalysts activated by visible light, Int. J. Photoenergy, 2011 (2011) 685935–685948.
  41. E. Kamaraj, S. Somasundaram, K. Balasubramani, M.P. Eswaran, R. Muthuramalingam, S. Park, Facile fabrication of CuO-Pb2O3 nanophotocatalysts for efficient degradation of Rose Bengal dye under visible light irradiation, Appl. Surf. Sci., 433 (2018) 206–212.
  42. Y.R. Denny, T. Firmansyah, Isnaeni, S. Aritonang, A.M. Kartina, Evaluation of band gap energy and surface roughness for tin indium zinc oxide thin films by atomic force microscopy and electron spectroscopy, IOP Conf. Ser.: Mater. Sci. Eng., 343 (2018) 012006.
  43. M. Singh, A. Yadav, S. Kumar, P. Agarwal, Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp2/sp3 fraction, Appl. Surf. Sci., 326 (2015) 236–242.
  44. H. Huang, S. Tu, C. Zeng, T. Zhang, A.H. Reshak, Y. Zhang, Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation, Angew. Chem. Int. Ed., 56 (2017) 11860–11864.
  45. F. Chen, H. Huang, L. Guo, Y. Zhang, The role of polarization in photocatalysis, Angew. Chem. Int. Ed., 58 (2019) 10061–10073.
  46. L. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu, M. Batmunkh, Y. Zhang, T. Ma, Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction, Adv. Mater., 31 (2019) 1900546.
  47. F. Chen, H. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han, T. Ma, Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction, Adv. Funct. Mater., 28 (2018) 1804284.
  48. M. Salavati-Niasari, F. Mohandes, F. Davar, Preparation of PbO nanocrystals via decomposition of lead oxalate, Polyhedron, 28 (2009) 2263–2267.
  49. L.M. Droessler, H.E. Assender, A.A.R. Watt, Thermally deposited lead oxides for thin-film photovoltaics, Mater. Lett., 71 (2012) 51–53.
  50. Y.-C. Lai, J.-C. Lin, C. Lee, Nucleation and growth of highly oriented lead titanate thin-films prepared by a sol-gel method, Appl. Surf. Sci., 125 (1998) 51–57.
  51. F.-Y. Liu, J.-H. Lin, Y.-M. Dai, L.-W. Chen, S.-T. Huang, T.-W. Yeh, J.-L. Chang, C.-C. Chen, Preparation of perovskites PbBiO2I/PbO exhibiting visible-light photocatalytic activity, Catal. Today, 314 (2018) 28–41.
  52. C.-H. Park, M.-S. Won, Y.-H. Oh, Y.-G. Son, An XPS study and electrical properties of Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS) structures according to the substrate temperature of the PbO buffer layer, Appl. Surf. Sci., 252 (2005) 1988–1997.
  53. D.A. Zatsepin, D.W. Boukhvalov, N.V. Gavrilov, A.F. Zatsepin, V.Ya. Shur, A.A. Esin, S.S. Kim, E.Z. Kurmaev, Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2-host by Pb-implantation: XPS-and-DFT characterization, Appl. Surf. Sci., 400 (2017) 110–117.
  54. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  55. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  56. D. Tromans, Temperature and pressure-dependent solubility of oxygen in water: a thermodynamic analysis, Hydrometallurgy, 48 (1998) 327–342.
  57. J.F. Gomes, A. Lopes, M. Gmurek, R.M. Quinta-Ferreira, R.C. Martins, Study of the influence of the matrix characteristics over the photocatalytic ozonation of parabens using Ag-TiO2, Sci. Total Environ., 646 (2019) 1468–1477.