References

  1. N.-u. Ain, W. Shaheen, B. Bashir, N.M. Abdelsalam, M.F. Warsi, M.A. Khan, M. Shahid, Electrical, magnetic and photoelectrochemical activity of rGO/MgFe2O4 nanocomposites under visible light irradiation, Ceram. Int., 42 (2016) 12401–12408.
  2. C. Han, N. Zhang, Y.-J. Xu, Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis, Nano Today, 11 (2016) 351–372.
  3. D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, Appl. Mater. Interfaces, 46 (2007) 2741–2746.
  4. J. Tang, Z. Zou, J. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation, Angew. Chem., 43 (2004) 4462–4466.
  5. Y. Fu, P. Xiong, H. Chen, X. Sun, X. Wang, High photocatalytic activity of magnetically separable manganese ferrite graphene heteroarchitectures, Ind. Eng., 51 (2012) 725–731.
  6. S. Nazim, T. Kousar, M. Shahid, M.A. Khan, G. Nasar, M. Sher, M.F. Warsi, New graphene-CoxZn1–xFe2O4 nano-heterostructures: magnetically separable visible light photocatalytic materials, Ceram. Int., 42 (2016) 7647–7654.
  7. X. Zeng, W. Zhang, X. Xiao, C. Wan, H. Wang, Interfacial charge transfer and mechanisms of enhanced photocatalysis of an anatase TiO2(001)-MoS2-graphene nanocomposite: a first-principles investigation, Comput. Mater., 126 (2017) 43–51.
  8. S. Yousaf, T. Kousar, M.B. Taj, P.O. Agboola, I. Shakir, M.F. Warsi, Synthesis and characterization of double heterojunctiongraphene nano-hybrids for photocatalytic applications, Ceram. Int., 45 (2019) 17806–17817.
  9. X. Chen, Y. Dai, J. Guo, T. Liu, X. Wang, Novel magnetically separable reduced graphene oxide (RGO)/ZnFe2O4/Ag3PO4 nanocomposites for enhanced photocatalytic performance toward 2,4-dichlorophenol under visible light, Ind. Eng., 55 (2016) 568–578.
  10. A. Rasheed, M. Mahmood, U. Ali, M. Shahid, I. Shakir, S. Haider, M.A. Khan, M.F. Warsi, ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposite for enhanced structural, dielectric and visible light photocatalytic applications, Ceram. Int., 42 (2016) 15747–15755.
  11. A. Iftikhar, S. Yousaf, F.A. Ahmed Ali, S. Haider, S. Ud-Din Khan, I. Shakir, F. Iqbal, M.F. Warsi, Erbium-substituted Ni0.4Co0.6Fe2O4 ferrite nanoparticles and their hybrids with reduced graphene oxide as magnetically separable powder photocatalyst, Ceram. Int., 46 (2020) 1203–1210.
  12. L. Zhang, J. Lian, L. Wu, Z. Duan, J. Jiang, L. Zhao, Synthesis of a thin-layer MnO2 nanosheet-coated Fe3O4 nanocomposite as a magnetically separable photocatalyst, ACS Appl. Mater. Interfaces, 30 (2014) 7006–7013.
  13. Y. Fu, H. Chen, X. Sun, X. Wang, Combination of cobalt ferrite and graphene: high-performance and recyclable visible-light photocatalysis, Appl. Catal., B, 111–112 (2012) 280–287.
  14. H. Javed, A. Rehman, S. Mussadiq, M. Shahid, M. Khan, I. Shakir, P. Agboola, M. Aboud, M. Warsi, Reduced graphene oxide-spinel ferrite nano-hybrids as magnetically separable and recyclable visible light driven photocatalyst, Synth. Met, 254 (2019) 1–9.
  15. A. Shabbir, S. Ajmal, M. Shahid, I. Shakir, P. Agboola, M. Warsi, Zirconium substituted spinel nano-ferrite Mg0.2Co0.8Fe2O4 particles and their hybrids with reduced graphene oxide for photocatalytic and other potential applications, Ceram. Int., 45 (2019) 16121–16129.
  16. M. Mahmood, M.A. Yousuf, M.M. Baig, M. Imran, M. Suleman, M. Shahid, M.A. Khan, M.F. Warsi, Spinel ferrite magnetic nanostructures at the surface of graphene sheets for visible light photocatalysis applications, Physica B, 550 (2018) 317–323.
  17. O. Raina, R. Manimekalai, Photocatalysis of cobalt zinc ferrite nanorods under solar light, Res. Chem. Intermed., 44 (2018) 5941–5951.
  18. G. Fan, J. Tong, F. Li, Visible-light-induced photocatalyst based on cobalt-doped zinc ferrite nanocrystals, Ind. Eng., 51 (2012) 13639–13647.
  19. W. Wang, N. Li, K. Hong, H. Guo, R. Ding, Z. Xia, Z-scheme recyclable photocatalysts based on flower-like nickel zinc ferrite nanoparticles/ZnO nanorods: enhanced activity under UV and visible irradiation, J. Alloys Compd., 777 (2019) 1108–1114.
  20. S. Akbari, S.M. Masoudpanah, S.M. Mirkazemi, N. Aliyan, PVA assisted coprecipitation synthesis and characterization of MgFe2O4 nanoparticles, Ceram. Int., 43 (2017) 6263–6267.
  21. L. Sun, B. Fugetsu, Mass production of graphene oxide from expanded graphite, Mater. Lett., 109 (2013) 207–210.
  22. N. Rezlescu, E. Rezlescu, C. Pasnicu, M.L. Craus, Comparison of the effects of TiO2-GeO2 and R2O3 substitutions in a high frequency nickel-zinc ferrite, J. Magn. Magn. Mater., 136 (1994) 319–326.
  23. M.A. Ahmed, E. Ateia, L.M. Salah, A.A. El-Gamal, Structural and electrical studies on La3+ substituted Ni–Zn ferrites, Mater. Chem. Phys., 92 (2005) 310–321.
  24. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods, J. Electron. Spectro., 195 (2014) 145–154.
  25. G.R. Kumar, K.V. Kumar, Y.C. Venudhar, Synthesis, structural and magnetic properties of copper substituted nickel ferrites by sol-gel method, Mater. Sci. Appl., 3 (2012) 87–91.
  26. S. Mandal, S. Natarajan, A. Tamilselvi, S. Mayadevi, Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment, J. Environ. Chem. Eng., 4 (2016) 2706–2712.
  27. V. Narayanaswamy, I.M. Obaidat, A.S. Kamzin, S. Latiyan, S. Jain, H. Kumar, C. Srivastava, S. Alaabed, B. Issa, Synthesis of graphene oxide-Fe3O4 based nanocomposites using the mechanochemical method and in vitro magnetic hyperthermia, Int. J. Mol. Sci., 20 (2019) 3368.
  28. A. Yousuf, M. Mahmood, N. Al-Khalli, M. Khan, M. Aboud, I. Shakir, M. Warsi, The impact of yttrium cations (Y3+) on structural, spectral and dielectric properties of spinel manganese ferrite nanoparticles, Ceram. Int., 45 (2019) 10936–10942.
  29. Z.A. Gilani, M.F. Warsi, M.A. Khan, I. Shakir, M. Shahid, M.N. Anjum, Impacts of neodymium on structural, spectral and dielectric properties of LiNi0.5Fe2O4 nanocrystalline ferrites fabricated via micro-emulsion technique, Physica E, 73 (2015) 169–174.
  30. S. Yousaf, S. Zulfiqar, M.N. Shahi, M.F. Warsi, N.F. Al-Khalli, M.F. Aly Aboud, I. Shakir, Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route, Ceram. Int., 46 (2020) 3750–3758.
  31. D. Zhang, Y. Zhang, L. Zheng, Y. Zhan, L. He, Graphene oxide/ poly-l-lysine assembled layer for adhesion and electrochemical impedance detection of leukemia K562 cancercells, Biosens. Bioelectron., 42 (2013) 112–118.
  32. S. Zhai, S. Gong, J. Jiang, S. Dong, J. Li, Assembly of multilayer films containing iron(III)-substituted Dawson-type heteropolyanions and its electrocatalytic properties: cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis spectrometry, Anal. Chim. Acta, 486 (2003) 85–92.
  33. J. Ma, T. Xue, X. Qin, Sugar-derived carbon/graphene composite materials as electrodes for supercapacitors, Electrochim. Acta, 115 (2014) 566–572.
  34. E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: a review, Sep. Purif. Technol., 87 (2012) 1–14.
  35. A. Rasheed, M. Mahmood, U. Ali, M. Shahid, I. Shakir, S. Haider, M.A. Khan, M.F. Warsi, ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposite for enhanced structural, dielectric and visible light photocatalytic applications, Ceram. Int., 42 (2016) 15747–15755.
  36. C. Salameh, J.-P. Nogier, F. Launay, M. Boutros, Dispersion of colloidal TiO2 nanoparticles on mesoporous materials targeting photocatalysis applications, Catal. Today, 257(Pt 1) (2015) 35–40.