References
- F. Subari, M.A. Kamaruzzaman, S.R.S. Abdullah, H.A. Hasan,
A.R. Othman, Simultaneous removal of ammonium and
manganese in slow sand biofilter (SSB) by naturally grown
bacteria from lake water and its diverse microbial community, J.
Environ. Chem. Eng., 6 (2018) 6351–6358.
- S.F. Seyedpour, A. Rahimpour, H. Mohsenian, M.J. Taherzadeh,
Low fouling ultrathin nanocomposite membranes for efficient
removal of manganese, J. Membr. Sci., 549 (2018) 205–216.
- C.C. Kan, M.C. Aganon, C.M. Futalan, M.L.P. Dalida,
Adsorption of Mn2+ from aqueous solution using Fe and Mn
oxide-coated sand, J. Environ. Sci., 25 (2013) 1483–1491.
- J. Su, P. Bao, T. Bai, L. Deng, H. Wu, F. Liu, J. He, CotA, a
multicopper oxidase from Bacillus pumilus WH4, exhibits
manganese-oxidase activity, PLoS One, 8 (2013) e60573.
- A. Funes, J. De Vicente, L. Cruz-Pizarro, I.D. Vicente, The
influence of pH on manganese removal by magnetic microparticles
in solution, Water Res., 53 (2014) 110–122.
- W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria
and Rates in Natural Waters, 3rd ed., Wiley, New York, U.S.A,
1996.
- C. Dalai, R. Jha, V.R. Desai, Rice husk and sugarcane baggase
based activated carbon for iron and manganese removal, Aquat.
Procedia, 4 (2015) 1126–1133.
- A. Ates, G. Akgül, Modification of natural zeolite with NaOH
for removal of manganese in drinking water, Powder Technol.,
287 (2016) 285–291.
- D. Vries, C. Bertelkamp, F.S. Kegel, B. Hofs, J. Dusseldorp,
J.H. Bruins, W.D. Vet, B.V.D. Akker, Iron and manganese
removal: recent advances in modeling treatment efficiency by
rapid sand filtration, Water Res., 10 (2017) 35–45.
- J.H. Bruins, B. Petrusevski, Y.M. Slokar, K. Huysman, K. Joris,
J.C. Kruithof, M.D. Kennedy, Biological and physico-chemical
formation of Birnessite during the ripening of manganese
removal filters, Water Res., 69 (2014) 154–161.
- D.R. Learman, S.D. Wankel, S.M. Webb, N. Martinez,
A.S. Madden, C.M. Hansel, Coupled biotic-abiotic Mn(II)
oxidation pathway mediates the formation and structural
evolution of biogenic Mn oxides, Geochim. Cosmochim. Acta,
75 (2011) 6048–6063.
- C. Li, S. Wang, X. Du, X. Cheng, M. Fu, N. H, D. Li,
Immobilization of iron- and manganese-oxidizing bacteria
with a biofilm-forming bacterium for the effective removal of
iron and manganese from groundwater, Bioresour. Technol.,
220 (2016) 76–84.
- W. Tang, J. Gong, L. Wu, Y. Li, M. Zhang, X. Zeng, DGGE
diversity of manganese mine samples and isolation of a
Lysinibacillus sp. efficient in removal of high Mn(II) concentrations,
Chemosphere, 165 (2016) 277–283.
- J.H. Bruins, B. Petrusevski, Y.M. Slokar, J.C. Kruithof,
M.D. Kennedy, Manganese removal from groundwater:
characterization of filter media coating, Desal. Water Treat.,
55 (2014) 1851–1863.
- Y. Cheng, T. Huang, C. Liu, S. Zhang, Effects of dissolved
oxygen on the start-up of manganese oxides filter for catalytic
oxidative removal of manganese from groundwater, Chem.
Eng. J., 371(2019) 88–95.
- Y. Cheng, T.L. Huang, Y. Sun, X. Shi, Catalytic oxidation removal
of ammonium from groundwater by manganese oxides filter:
performance and mechanisms, Chem. Eng. J., 322 (2017) 82–89.
- X. Tian, R. Zhang, T.L. Huang, G. Wen, The simultaneous
removal of ammonium and manganese from surface water
by MeOx: side effect of ammonium presence on manganese
removal, J. Environ. Sci., 77 (2019) 346–353.
- Y. Cai, D. Li, Y. Liang, Y. Luo, H. Zeng, J. Zhang, Effective
start-up biofiltration method for Fe, Mn, and ammonia removal
and bacterial community analysis, Bioresour. Technol., 176
(2015) 149–155.
- C. Tizaoui, S.D. Rachmawati, N. Hilal, The removal of copper
in water using manganese activated saturated and unsaturated
sand filters, Chem. Eng. J., 209 (2012) 334–344.
- SEPA, Analytical Methods of Water and Wastewater, 4th ed.,
China Environmental Science Press, Beijing, China, 2002.
- Y.M. Guo, T.L. Huang, G. Wen, C. Xin, The simultaneous
removal of ammonium and manganese from groundwater
by iron-manganese co-oxide filter film: the role of chemical
catalytic oxidation for ammonium removal, Chem. Eng. J.,
308 (2017) 322–329.
- Y.M. Guo, T.L. Huang, G. Wen, C. Xin, Comparisons of the film
peeling from the composite oxides of quartz sand filters using
ozone, hydrogen peroxide and chlorine dioxide, J. Environ.
Sci., 34 (2015) 20–27.
- R. Buamah, B. Petrusevski, J.C. Schippers, Oxidation of adsorbed
ferrous iron: kinetics and influence of process conditions, Water
Sci. Technol., 60 (2009) 2353–2363.
- J.R. Bargar, B.M. Tebo, U. Bergmann, S.M. Webb, P. Glatzel, Van
Q. Chiu, M. Villalobos, Biotic and abiotic products of Mn(II)
oxidation by spores of the marine Bacillus sp. strain SG-1, Am.
Mineral., 90 (2005) 143–154.
- N.Q. Zhou, D.F. Liu, D. Min, L. Cheng, X.N. Huang, L.J. Tian,
D.B. Li, H.Q. Yu, Continuous degradation of ciprofloxacin in a
manganese redox cycling system driven by Pseudomonas putida
MnB-1, Chemosphere, 211 (2018) 345–351.
- H. Boumaiza, A. Renard, M.R. Robinson, G. Kervern, L. Vidal,
C. Ruby, L. Bergaoui, R. Coustel, A multi-technique approach
for studying Na triclinic and hexagonal birnessites, J. Solid State
Chem., 272 (2019) 234–243.
- M. Wiechen, I. Zaharieva, H. Dau, P. Kurz, Layered manganese
oxides for water-oxidation: alkaline earth cations influence
catalytic activity in a photosystem II-like fashion, Chem. Sci.,
3 (2012) 2330–2339.
- P.L. Goff, N. Baffier, S. Bach, J.P. Pereira-Ramos, Synthesis,
ion exchange and electrochemical properties of lamellar
phyllomanganates of the birnessite group, Mater. Res. Bull.,
31 (1996) 63–75.
- A. Naidja, C. Liu, P. M. Huang, Formation of protein-birnessite
complex: XRD, FTIR, and AFM analysis, J. Colloid Interface Sci.,
251 (2002) 46–56.
- Q. Wang, P. Yang, M. Zhu, Effects of metal cations on coupled
birnessite structural transformation and natural organic matter
adsorption and oxidation, Geochim. Cosmochim. Acta, 250
(2019) 292–310.
- C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach,
J.P. Pereira-Ramos, Raman spectra of birnessite manganese
dioxides, Solid State Ionics, 159 (2003) 345–356.
- J.E. Post, Manganese oxide minerals: crystal structures and
economic and environmental significance, Proc. Natl. Acad. Sci.
U.S.A., 96 (1999) 3447–3454.
- S. Luo, L. Duan, B. Sun, M. Wei, X. Li, A. Xu, Manganese oxide
octahedral molecular sieve (OMS-2) as an effective catalyst
for degradation of organic dyes in aqueous solutions in the
presence of peroxymonosulfate, Appl. Catal., B, 164 (2015)
92–99.
- J.M. Cerrato,W.R. Knocke, M.F. Hochella, Jr., A.M. Dietrich,
A. Jones, T.F. Cromer, Application of XPS and solution chemistry
analysis to investigate soluble manganese removal by MnOx(s)-
coated media, Environ. Sci. Technol., 45 (2011) 10068–10074.
- V.P. Santos, M.F.R. Pereira, J.J.M. Órfão, J.L. Figueiredo, The role
of lattice oxygen on the activity of manganese oxides towards
the oxidation of volatile organic compounds, Appl. Catal., B,
99 (2010) 353–363.
- N.H. Wang, S.L. Lo, Preparation, characterization and adsorption
performance of cetyltrimethylammonium modified
birnessite, Appl. Surf. Sci., 299 (2014) 123–130.
- H.W. Nesbitt, D. Banerjee, Interpretation of XPS Mn(2p) spectra
of Mn oxyhydroxides and constraints on the mechanism of
MnO2 precipitation, Am. Mineral., 83 (1998) 305–315.
- J.H. Park, B.S. Kim, C.M. Chon, Characterization of iron and
manganese minerals and their associated microbiota in different
mine sites to reveal the potential interactions of microbiota with
mineral formation, Chemosphere, 191 (2018) 245–252.
- X.Z. Lin, A.G. Gao, H.W. Chen, Isolation and phylogenetic
analysis of cultivable manganese bacteria in sediments from the
Arctic ocean, Acta Ecol. Sin., 28 (2008) 6364–6370.
- V.R. Cahyani, J. Murase, E. Ishibashi, S. Asakawa, M. Kimura,
Bacterial communities in manganese nodules in rice field
subsoils: estimation using PCR-DGGE and sequencing analysis,
Soil Sci. Plant Nutr., 53 (2007) 575–84.
- C.R. Anderson, H.A. Johnson, N. Caputo, R.E. Davis,
J.W. Torpey, B.M. Tebo, Mn(II) oxidation is catalyzed by heme
peroxidases in “Aurantimonas manganoxydans” Strain SI85–9A1
and Erythrobacter sp. Strain SD-21, Appl. Environ. Microbiol.,
75 (2009) 4130–4138.
- G.J. Dick, Y.E. Lee, B.M. Tebo, Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes,
Appl. Environ. Microbiol., 72 (2006) 3184–3190.
- C.A. Francis, K.L. Casciotti, B.M. Tebo, Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG,
to the exosporium of the marine Bacillus sp. strain SG-1, Arch.
Microbiol., 178 (2002) 450–456.
- K.H. Nealson, J. Ford, Surface enhancement of bacterial
manganese oxidation: implications for aquatic environments,
Geomicrobiol. J., 2 (1980) 21–37.
- R.A. Rosson, K.H. Nealson, Manganese binding and oxidation
by spores of a marine Bacillus, J. Bacteriol., 151 (1982) 1027–1034.
- K. Toyoda, B.M. Tebo, Kinetics of Mn(II) oxidation by spores of
the marine Bacillus sp. SG-1, J. Bacteriol., 189 (2016) 58–69.
- L.G. Waasbergen, J.A. Hoch, B.M. Tebo, Genetic analysis
of the marine manganese-oxidizing Bacillus sp. strainSG-1:
protoplast transformation, Tn917 mutagenesis, and identification
of chromosomal loci involved in manganese oxidation,
J. Bacteriol., 175 (1993) 7594–7603.
- X. Zeng, M. Zhang, Y. Liu, W. Tang, Manganese(II) oxidation
by the multi-copper oxidase CopA from Brevibacillus panacihumi MK-8, Enzyme Microb. Technol., 117 (2018) 79–83.
- E. Gregory, J.T. Staley, Widespread distribution of ability to
oxidize manganese among freshwater bacteria, Appl. Environ.
Microbiol., 44 (1982) 509–511.
- P. Mouchet, From conventional to biological removal of Fe and
Mn in France, J. Am. Water Works Assn., 84 (1992) 158–166.
- C.A. Francis, E.-M. Co, B.M. Tebo, Enzymatic manganese(II)
oxidation by a marine alpha-Proteobacterium, Appl. Environ.
Microbiol., 67 (2001) 4024–4029.
- M.J. Carmichael, S.K. Carmichael, C.M. Santelli, A. Strom,
S.L. Bräuer, Mn(II)-oxidizing bacteria are abundant and
environmentally relevant members of ferromanganese deposits
in caves of the Upper Tennessee River Basin, Geomicrobiol. J.,
30 (2013) 779–800.
- L.F. Adams, W.C. Ghiorse, Characterization of extracellular
Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing
protein from Leptothrix discophora SS-1, J. Bacteriol., 169 (1987)
1279–1285.
- P.L.A.M. Corstjens, J.P.M. De Vrind, P. Westbroek, E.W. De
V.-De Jong, Enzymatic iron oxidation by Leptothrix discophora:
identification of an iron-oxidizing protein, Appl. Environ.
Microbiol., 58 (1992) 450–454.
- I.A.E. Gheriany, D. Bocioaga, A.G. Hay, W.C. Ghiorse,
M.L. Shuler, L.W. Lion, Iron requirement for Mn(II) oxidation
by Leptothrix discophora SS-1, Appl. Environ. Microbiol.,
75 (2009) 1229–1235.
- Y.M. Nelson, L.W. Lion, W.C. Ghiorse, M.L. Shuler, Production
of biogenic Mn oxides by Leptothrix discophora SS-1 in a
chemically defined growth medium and evaluation of their Pb
adsorption characteristics, Appl. Environ. Microbiol., 65 (1999)
175–180.
- J.P. Ridge, M. Lin, E.I. Larsen, M. Fegan, A.G. McEwan, L.I. Sly,
A multicopper oxidase is essential for manganese oxidation and
laccase-like activity in Pedomicrobium sp. ACM 3067, Environ.
Microbiol., 9 (2007) 944–953.
- G.-J. Brouwers, J.P.M. De Vrind, P.L.A.M. Corstjens, P. Cornelis,
C. Baysse, E.W. De V.-De Jong, cumA, a gene encoding
a multicopper oxidase, is involved in Mn2+ oxidation in
Pseudomonas putida GB-1, Appl. Environ. Microbiol., 65 (1999)
1762–1768.
- R. Caspi, B.M. Tebo, M.G. Haygood, c-Type cytochromes and
manganese oxidation in Pseudomonas putida MnB1, Appl.
Environ. Microbiol., 64 (1998) 3549–3555.
- S.J. Parikh, J. Chorover, FTIR spectroscopic study of biogenic
Mn-oxide formation by Pseudomonas putida GB-1, Geomicrobiol.
J., 22 (2005) 207–218.
- S. Jiang, D.G. Kim, J. Kim, S.O. Ko, Characterization of the
biogenic manganese oxides produced by Pseudomonas putida
strain MnB1, Environ. Eng. Res., 15 (2011) 183–190.