References

  1. F. Subari, M.A. Kamaruzzaman, S.R.S. Abdullah, H.A. Hasan, A.R. Othman, Simultaneous removal of ammonium and manganese in slow sand biofilter (SSB) by naturally grown bacteria from lake water and its diverse microbial community, J. Environ. Chem. Eng., 6 (2018) 6351–6358.
  2. S.F. Seyedpour, A. Rahimpour, H. Mohsenian, M.J. Taherzadeh, Low fouling ultrathin nanocomposite membranes for efficient removal of manganese, J. Membr. Sci., 549 (2018) 205–216.
  3. C.C. Kan, M.C. Aganon, C.M. Futalan, M.L.P. Dalida, Adsorption of Mn2+ from aqueous solution using Fe and Mn oxide-coated sand, J. Environ. Sci., 25 (2013) 1483–1491.
  4. J. Su, P. Bao, T. Bai, L. Deng, H. Wu, F. Liu, J. He, CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity, PLoS One, 8 (2013) e60573.
  5. A. Funes, J. De Vicente, L. Cruz-Pizarro, I.D. Vicente, The influence of pH on manganese removal by magnetic microparticles in solution, Water Res., 53 (2014) 110–122.
  6. W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., Wiley, New York, U.S.A, 1996.
  7. C. Dalai, R. Jha, V.R. Desai, Rice husk and sugarcane baggase based activated carbon for iron and manganese removal, Aquat. Procedia, 4 (2015) 1126–1133.
  8. A. Ates, G. Akgül, Modification of natural zeolite with NaOH for removal of manganese in drinking water, Powder Technol., 287 (2016) 285–291.
  9. D. Vries, C. Bertelkamp, F.S. Kegel, B. Hofs, J. Dusseldorp, J.H. Bruins, W.D. Vet, B.V.D. Akker, Iron and manganese removal: recent advances in modeling treatment efficiency by rapid sand filtration, Water Res., 10 (2017) 35–45.
  10. J.H. Bruins, B. Petrusevski, Y.M. Slokar, K. Huysman, K. Joris, J.C. Kruithof, M.D. Kennedy, Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters, Water Res., 69 (2014) 154–161.
  11. D.R. Learman, S.D. Wankel, S.M. Webb, N. Martinez, A.S. Madden, C.M. Hansel, Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides, Geochim. Cosmochim. Acta, 75 (2011) 6048–6063.
  12. C. Li, S. Wang, X. Du, X. Cheng, M. Fu, N. H, D. Li, Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater, Bioresour. Technol., 220 (2016) 76–84.
  13. W. Tang, J. Gong, L. Wu, Y. Li, M. Zhang, X. Zeng, DGGE diversity of manganese mine samples and isolation of a Lysinibacillus sp. efficient in removal of high Mn(II) concentrations, Chemosphere, 165 (2016) 277–283.
  14. J.H. Bruins, B. Petrusevski, Y.M. Slokar, J.C. Kruithof, M.D. Kennedy, Manganese removal from groundwater: characterization of filter media coating, Desal. Water Treat., 55 (2014) 1851–1863.
  15. Y. Cheng, T. Huang, C. Liu, S. Zhang, Effects of dissolved oxygen on the start-up of manganese oxides filter for catalytic oxidative removal of manganese from groundwater, Chem. Eng. J., 371(2019) 88–95.
  16. Y. Cheng, T.L. Huang, Y. Sun, X. Shi, Catalytic oxidation removal of ammonium from groundwater by manganese oxides filter: performance and mechanisms, Chem. Eng. J., 322 (2017) 82–89.
  17. X. Tian, R. Zhang, T.L. Huang, G. Wen, The simultaneous removal of ammonium and manganese from surface water by MeOx: side effect of ammonium presence on manganese removal, J. Environ. Sci., 77 (2019) 346–353.
  18. Y. Cai, D. Li, Y. Liang, Y. Luo, H. Zeng, J. Zhang, Effective start-up biofiltration method for Fe, Mn, and ammonia removal and bacterial community analysis, Bioresour. Technol., 176 (2015) 149–155.
  19. C. Tizaoui, S.D. Rachmawati, N. Hilal, The removal of copper in water using manganese activated saturated and unsaturated sand filters, Chem. Eng. J., 209 (2012) 334–344.
  20. SEPA, Analytical Methods of Water and Wastewater, 4th ed., China Environmental Science Press, Beijing, China, 2002.
  21. Y.M. Guo, T.L. Huang, G. Wen, C. Xin, The simultaneous removal of ammonium and manganese from groundwater by iron-manganese co-oxide filter film: the role of chemical catalytic oxidation for ammonium removal, Chem. Eng. J., 308 (2017) 322–329.
  22. Y.M. Guo, T.L. Huang, G. Wen, C. Xin, Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide, J. Environ. Sci., 34 (2015) 20–27.
  23. R. Buamah, B. Petrusevski, J.C. Schippers, Oxidation of adsorbed ferrous iron: kinetics and influence of process conditions, Water Sci. Technol., 60 (2009) 2353–2363.
  24. J.R. Bargar, B.M. Tebo, U. Bergmann, S.M. Webb, P. Glatzel, Van Q. Chiu, M. Villalobos, Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1, Am. Mineral., 90 (2005) 143–154.
  25. N.Q. Zhou, D.F. Liu, D. Min, L. Cheng, X.N. Huang, L.J. Tian, D.B. Li, H.Q. Yu, Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1, Chemosphere, 211 (2018) 345–351.
  26. H. Boumaiza, A. Renard, M.R. Robinson, G. Kervern, L. Vidal, C. Ruby, L. Bergaoui, R. Coustel, A multi-technique approach for studying Na triclinic and hexagonal birnessites, J. Solid State Chem., 272 (2019) 234–243.
  27. M. Wiechen, I. Zaharieva, H. Dau, P. Kurz, Layered manganese oxides for water-oxidation: alkaline earth cations influence catalytic activity in a photosystem II-like fashion, Chem. Sci., 3 (2012) 2330–2339.
  28. P.L. Goff, N. Baffier, S. Bach, J.P. Pereira-Ramos, Synthesis, ion exchange and electrochemical properties of lamellar phyllomanganates of the birnessite group, Mater. Res. Bull., 31 (1996) 63–75.
  29. A. Naidja, C. Liu, P. M. Huang, Formation of protein-birnessite complex: XRD, FTIR, and AFM analysis, J. Colloid Interface Sci., 251 (2002) 46–56.
  30. Q. Wang, P. Yang, M. Zhu, Effects of metal cations on coupled birnessite structural transformation and natural organic matter adsorption and oxidation, Geochim. Cosmochim. Acta, 250 (2019) 292–310.
  31. C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, J.P. Pereira-Ramos, Raman spectra of birnessite manganese dioxides, Solid State Ionics, 159 (2003) 345–356.
  32. J.E. Post, Manganese oxide minerals: crystal structures and economic and environmental significance, Proc. Natl. Acad. Sci. U.S.A., 96 (1999) 3447–3454.
  33. S. Luo, L. Duan, B. Sun, M. Wei, X. Li, A. Xu, Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate, Appl. Catal., B, 164 (2015) 92–99.
  34. J.M. Cerrato,W.R. Knocke, M.F. Hochella, Jr., A.M. Dietrich, A. Jones, T.F. Cromer, Application of XPS and solution chemistry analysis to investigate soluble manganese removal by MnOx(s)- coated media, Environ. Sci. Technol., 45 (2011) 10068–10074.
  35. V.P. Santos, M.F.R. Pereira, J.J.M. Órfão, J.L. Figueiredo, The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds, Appl. Catal., B, 99 (2010) 353–363.
  36. N.H. Wang, S.L. Lo, Preparation, characterization and adsorption performance of cetyltrimethylammonium modified birnessite, Appl. Surf. Sci., 299 (2014) 123–130.
  37. H.W. Nesbitt, D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation, Am. Mineral., 83 (1998) 305–315.
  38. J.H. Park, B.S. Kim, C.M. Chon, Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation, Chemosphere, 191 (2018) 245–252.
  39. X.Z. Lin, A.G. Gao, H.W. Chen, Isolation and phylogenetic analysis of cultivable manganese bacteria in sediments from the Arctic ocean, Acta Ecol. Sin., 28 (2008) 6364–6370.
  40. V.R. Cahyani, J. Murase, E. Ishibashi, S. Asakawa, M. Kimura, Bacterial communities in manganese nodules in rice field subsoils: estimation using PCR-DGGE and sequencing analysis, Soil Sci. Plant Nutr., 53 (2007) 575–84.
  41. C.R. Anderson, H.A. Johnson, N. Caputo, R.E. Davis, J.W. Torpey, B.M. Tebo, Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” Strain SI85–9A1 and Erythrobacter sp. Strain SD-21, Appl. Environ. Microbiol., 75 (2009) 4130–4138.
  42. G.J. Dick, Y.E. Lee, B.M. Tebo, Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes, Appl. Environ. Microbiol., 72 (2006) 3184–3190.
  43. C.A. Francis, K.L. Casciotti, B.M. Tebo, Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1, Arch. Microbiol., 178 (2002) 450–456.
  44. K.H. Nealson, J. Ford, Surface enhancement of bacterial manganese oxidation: implications for aquatic environments, Geomicrobiol. J., 2 (1980) 21–37.
  45. R.A. Rosson, K.H. Nealson, Manganese binding and oxidation by spores of a marine Bacillus, J. Bacteriol., 151 (1982) 1027–1034.
  46. K. Toyoda, B.M. Tebo, Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1, J. Bacteriol., 189 (2016) 58–69.
  47. L.G. Waasbergen, J.A. Hoch, B.M. Tebo, Genetic analysis of the marine manganese-oxidizing Bacillus sp. strainSG-1: protoplast transformation, Tn917 mutagenesis, and identification of chromosomal loci involved in manganese oxidation, J. Bacteriol., 175 (1993) 7594–7603.
  48. X. Zeng, M. Zhang, Y. Liu, W. Tang, Manganese(II) oxidation by the multi-copper oxidase CopA from Brevibacillus panacihumi MK-8, Enzyme Microb. Technol., 117 (2018) 79–83.
  49. E. Gregory, J.T. Staley, Widespread distribution of ability to oxidize manganese among freshwater bacteria, Appl. Environ. Microbiol., 44 (1982) 509–511.
  50. P. Mouchet, From conventional to biological removal of Fe and Mn in France, J. Am. Water Works Assn., 84 (1992) 158–166.
  51. C.A. Francis, E.-M. Co, B.M. Tebo, Enzymatic manganese(II) oxidation by a marine alpha-Proteobacterium, Appl. Environ. Microbiol., 67 (2001) 4024–4029.
  52. M.J. Carmichael, S.K. Carmichael, C.M. Santelli, A. Strom, S.L. Bräuer, Mn(II)-oxidizing bacteria are abundant and environmentally relevant members of ferromanganese deposits in caves of the Upper Tennessee River Basin, Geomicrobiol. J., 30 (2013) 779–800.
  53. L.F. Adams, W.C. Ghiorse, Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1, J. Bacteriol., 169 (1987) 1279–1285.
  54. P.L.A.M. Corstjens, J.P.M. De Vrind, P. Westbroek, E.W. De V.-De Jong, Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein, Appl. Environ. Microbiol., 58 (1992) 450–454.
  55. I.A.E. Gheriany, D. Bocioaga, A.G. Hay, W.C. Ghiorse, M.L. Shuler, L.W. Lion, Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1, Appl. Environ. Microbiol., 75 (2009) 1229–1235.
  56. Y.M. Nelson, L.W. Lion, W.C. Ghiorse, M.L. Shuler, Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics, Appl. Environ. Microbiol., 65 (1999) 175–180.
  57. J.P. Ridge, M. Lin, E.I. Larsen, M. Fegan, A.G. McEwan, L.I. Sly, A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067, Environ. Microbiol., 9 (2007) 944–953.
  58. G.-J. Brouwers, J.P.M. De Vrind, P.L.A.M. Corstjens, P. Cornelis, C. Baysse, E.W. De V.-De Jong, cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1, Appl. Environ. Microbiol., 65 (1999) 1762–1768.
  59. R. Caspi, B.M. Tebo, M.G. Haygood, c-Type cytochromes and manganese oxidation in Pseudomonas putida MnB1, Appl. Environ. Microbiol., 64 (1998) 3549–3555.
  60. S.J. Parikh, J. Chorover, FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1, Geomicrobiol. J., 22 (2005) 207–218.
  61. S. Jiang, D.G. Kim, J. Kim, S.O. Ko, Characterization of the biogenic manganese oxides produced by Pseudomonas putida strain MnB1, Environ. Eng. Res., 15 (2011) 183–190.