References
- Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad,
Removal of methylene blue by mesoporous CMK-3: Kinetics,
isotherms and thermodynamics, J. Mol. Liq., 223 (2016) 763–770.
- L. Zhao, S.-T. Yang, S. Feng, Q. Ma, X. Peng, D. Wu, Preparation
and application of carboxylated graphene oxide sponge in dye
removal, Int. J. Environ. Res. Public Health, 14 (2017) 1301–1313.
- S. Hosseini, M.A. Khan, M.R. Malekbala, W. Cheah, T.S.Y.
Choong, Carbon coated monolith, a mesoporous material for
the removal of methyl orange from aqueous phase: adsorption
and desorption studies, Chem. Eng. J., 171 (2011) 1124–1131.
- S. Aber, N. Daneshvar, S.M. Soroureddin, A. Chabok,
K. Asadpour-Zeynali, Study of acid orange 7 removal from
aqueous solutions by powdered activated carbon and modeling
of experimental results by artificial neural network,
Desalination, 211 (2007) 87–95.
- A. Rodríguez, J. García, G. Ovejero, M. Mestanza, Adsorption
of anionic and cationic dyes on activated carbon from aqueous
solutions: equilibrium and kinetics, J. Hazard. Mater., 172 (2009)
1311–1320.
- G. Zhang, J. Qu, H. Liu, A.T. Cooper, R. Wu, CuFe2O4/activated
carbon composite: a novel magnetic adsorbent for the removal
of acid orange II and catalytic regeneration, Chemosphere,
68 (2007) 1058–1066.
- J. Ma, D. Huang, J. Zou, L. Li, Y. Kong, S. Komarneni, Adsorption
of methylene blue and Orange II pollutants on activated carbon
prepared from banana peel, J. Porous Mater., 22 (2015) 301–311.
- S. Akazdam, M. Chafi, W. Yassine, B. Gourich, Removal of Acid
Orange 7 dye from aqueous solution using the exchange resin
amberlite FPA-98 as an efficient adsorbent: kinetics, isotherms,
and thermodynamics study, J. Mater. Environ. Sci., 8 (2017)
2993–3012.
- K.-W. Jung, B.H. Choi, M.-J. Hwang, T.-U. Jeong, K.-H. Ahn,
Fabrication of granular activated carbons derived from spent
coffee grounds by entrapment in calcium alginate beads for
adsorption of acid orange 7 and methylene blue, Bioresour.
Technol., 219 (2016) 185–195.
- M. Czubaszek, J. Choma, Kinetic studies of selected dye adsorption
from aqueous solutions on nanoporous carbons obtained
from polymeric precursors, Ochr. Sr., 38 (2016) 3–12 (in Polish).
- S. Chen, M. Zhou, H.-F. Wang, T. Wang, X.-S. Wang, H.-B. Hou,
B.-Y. Song, Adsorption of reactive brilliant red X-3B in aqueous
solutions on clay–biochar composites from bagasse and natural
attapulgite, Water, 10 (2018) 703–718.
- X. Jin, M. Jiang, X. Shan, Z. Pei, Z. Chena, Adsorption of
methylene blue and orange II onto unmodified and surfactantmodified
zeolite, J. Colloid Interface Sci., 328 (2008) 243–247.
- L. Yu, Y. Luo, The adsorption mechanism of anionic and
cationic dyes by Jerusalem artichoke stalk-based mesoporous
activated carbon, J. Environ. Chem. Eng., 2 (2014) 220–229.
- N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal,
Adsorption process of methyl orange dye onto mesoporous
carbon material-kinetic and thermodynamic studies, J. Colloid
Interface Sci., 362 (2011) 457–462.
- R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous
carbons, Adv. Mater., 13 (2001) 677–781.
- A.H. Lu, W. Schmidt, B. Spliethoff, F. Schüth, Synthesis of
ordered mesoporous carbon with bimodal pore system and
high pore volume, Adv. Mater., 15 (2003) 1602–1606.
- J. Choma, Micro-mesoporous carbons: synthesis, properties,
application, Inż. Ochr. Sr., 16 (2013) 163–178 (in Polish).
- R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon
molecular sieves via template-mediated structural transformation,
J. Phys. Chem. B, 103 (1999) 7743–7746.
- J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of
porous carbon materials, Adv. Mater., 18 (2006) 2073–2094.
- T. Kyotani, Control of porous structure in carbon, Carbon,
38 (2000) 269–286.
- S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu,
T. Oshuna, O. Terasaki, Synthesis of new, nanoporous carbon
with hexagonally ordered mesostructure, J. Am. Chem. Soc.,
122 (2000) 10712–10713.
- S. Inagaki, K. Oikawa, Y. Kubota, Effect of carbon source on
the textural and electrochemical properties of novel cage-type
mesoporous carbon as a replica of KIT-5 mesoporous silica,
Chem. Lett., 38 (2009) 918–919.
- C. Liang, K. Hong, G.A. Guiochon, J.W. Mays, S. Dai, Synthesis
of a large-scale highly ordered porous carbon film by selfassembly
of block copolymers, Angew. Chem. Int. Ed., 3 (2004)
5785–5789.
- S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Synthesis of
ordered mesoporous carbons with channel structure from an
organic-organic nanocomposite, Chem. Commun., 16 (2005)
2125–2127.
- F. Zhang, Y. Meng, D. Gu, Y. Yan, C. Yu, B. Tu, D. Zhao, A facile
aqueous route to synthesize highly ordered mesoporous
polymers and carbon frameworks with Ia3d bicontinuous cubic
structure, J. Am. Chem. Soc., 127 (2005) 13508–13509.
- J. Górka, A. Zawiślak, J. Choma, M. Jaroniec, KOH activation
of mesoporous carbons obtained by soft-templating, Carbon,
46 (2008) 1159–1161.
- J. Jin, N. Nishiyama, Y. Egashira, K. Ueyama, Pore structure and
pore size controls of ordered mesoporous carbons prepared
from resorcinol/formaldehyde/triblock polymers, Microporous
Mesoporous Mater., 118 (2009) 218–223.
- J. Choma, K. Jedynak, D. Jamioła, M. Jaroniec, Influence of
carbonization temperature on the adsorption and structural
properties of mesoporous carbons obtained by soft templating,
Ochr. Sr., 34 (2012) 3–8 (in Polish).
- J. Choma, K. Jedynak, W. Fahrenholz, J. Ludwinowicz,
M. Jaroniec, Development of microporosity in mesoporous
carbons, Ochr. Sr., 35 (2013) 3–10 (in Polish).
- X. Wang, C.D. Liang, S. Dai, Facile synthesis of ordered mesoporous
carbons with high thermal stability by self-assembly of
resorcinol−formaldehyde and block copolymers under highly
acidic conditions, Langmiur, 24 (2008) 7500–7505.
- J. Choma, A. Kalinowska, K. Jedynak, M. Jaroniec, Reproducibility
of the synthesis and adsorption properties of ordered
mesoporous carbons obtained by the soft-templating method,
Ochr. Sr., 34 (2012) 1–8 (in Polish).
- N.P. Wickramaratne, M. Jaroniec, Activated carbon spheres
for CO2 adsorption, ACS Appl. Mater. Interfaces, 5 (2013)
1849–1855.
- S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in
multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
- S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity,
2nd ed., Academic Press, London, 1982.
- J. Jagiello, J.P. Olivier, 2D-NLDFT Adsorption models for
carbon slit-shaped pores with surface energetical heterogeneity
and geometrical corrugation, Carbon, 55 (2013) 70–80.
- J. Jagiello, J.P. Olivier, Carbon slit pore model incorporating
surface energetical heterogeneity and geometrical corrugation,
Adsorption, 19 (2013) 777–783.
- H.P. Boehm, Some aspects of the surface chemistry of carbon
blacks and other carbons, Carbon, 32 (1994) 759–769.
- H.P. Boehm, Surface oxides on carbon and their analysis:
a critical assessment, Carbon, 40 (2002) 145–149.
- C.K. Lim, H.H. Bay, C.H. Noeh, A. Aris, Z.A. Majid, Z. Ibrahim,
Application of zeolite-activated carbon macrocomposite
for the adsorption of Acid Orange 7: isotherm. kinetic and
thermodynamic
studies, Environ. Sci. Pollut. Res., 20 (2013)
7243–7255.
- J. Rivera-Utrilla, I. Bautista-Toledo, M.A. Ferro-García,
C. Moreno-Castilla, Activated carbon surface modifications
by adsorption of bacteria and their effect on aqueous lead
adsorption, J. Chem. Technol. Biotechnol., 76 (2001)
1209–1215.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti,
J. Rouquerol, T. Siemieniewska, Reporting physisorption data
for gas/solid systems with special reference to the determination
of surface area and porosity, Pure Appl. Chem., 57 (1985)
603–619.
- J. Choma, Characterization of nanoporous active carbons by
using gas adsorption isotherms, Wegiel aktywny w ochronie
srodowiska i przemysle, 2006, pp. 9–19 (in Polish).
- K. Jedynak, D. Wideł, N. Rędzia, Removal of Rhodamine B
(a basic dye) and Acid Yellow 17 (an acidic dye) from aqueous
solutions by ordered mesoporous carbon and commercial
activated carbon, Colloids Interfaces, 3, (2019) 30–46.
- Y.S., Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker,
Effect of solution pH, ionic strength, and temperature on
adsorption behavior of reactive dyes on activated carbon, Dyes
Pigm., 77 (2008) 16–23.
- C. Yin, C. Xu, W. Yu, Y. Jia, W. Sun, G. Zhou, M. Xian, Synthesis
of a novel isatin and ethylenediamine modified resin and
effective adsorption behavior towards Orange G, RSC Adv.,
9 (2019) 801–809.
- L. Abramian, H. El-Rassy, Adsorption kinetics and thermodynamics
of azo-dye Orange II onto highlyporous titania
aerogel, Chem. Eng. J., 150 (2009) 403–410.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances, Kungl. Sven. Veten. Akad. Handl., 24 (1898)
1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon
solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–59.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916)
2221–2295.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–470.
- J. Choma, M. Czubaszek, M. Jaroniec, Adsorption of dyes from
aqueous solutions on active carbons, Ochr. Sr., 37 (2015) 3–14
(in Polish).
- M.M. Dubinin, L.V. Radushkevich, The equation of the
characteristic curve of activated charcoal, Proc. Acad. Sci. USSR,
55 (1947) 331–337.
- M.M. Dubinin, The potential theory of adsorption of gasses and
vapors for adsorbents with energetically nonuniform surfaces,
Chem. Rev., 60 (1960) 235–266.
- S.M., Hasany, M.H., Chaudhary, Sorption potential of Hare
River sand for the removal of antimony from acidic aqueous
solution, Appl. Radiat. Isot., 47 (1996) 467–471.
- K. Kurdziel, M. Raczyńska-Żak, L. Dąbek, Equilibrium and
kinetic studies on the process of removing chromium(VI) from
solutions using HDTMA-modified halloysite, Desal. Water
Treat., 137 (2019) 88–100.
- H. Nourmoradi, A.R. Ghiasvand, Z. Noorimotlagh, Removal of
methylene blue and acid orange 7 from aqueous solutions by
activated carbon coated with zinc oxide (ZnO) nanoparticles:
equilibrium, kinetic, and thermodynamic study, Desal. Water
Treat., 55 (2015) 252–262.
- J. Pedro Silva, S. Sousa, J. Rodrigues, H. Antunes, J.J. Porter,
I. Gonçalves, S. Ferreira-Dias, Adsorption of acid orange 7 dye
in aqueous solutions by spent brewery grains, Separ. Purif.
Technol., 40 (2004) 309–315.
- B. Sarkar, Y. Xi, M. Megharaj, R. Naidu, Orange II adsorption
on palygorskites modified with alkyl trimethylammonium
and dialkyl dimethylammonium bromide - An isothermal and
kinetic study, Appl. Clay Sci., 51 (2011) 370–374.
- M. Czubaszek, J. Choma, Adsorption of dyes from aqueous
solutions on nanoporous carbon materials obtained from
polymeric precursors, Ochr. Sr., 39 (2017) 3–10 (in Polish).
- X. Quan, X. Liu, L. Bo, S. Chen, Y. Zhao, X. Cui, Regeneration
of acid orange 7-exhausted granular activated carbons with
microwave irradiation, Water Res., 38 (2004) 4484–4490.
- L. Kong, M. Su, Y. Peng, L. Hou, J. Liu, H. Li, Z. Diao, K. Shih,
Y. Xiong, D.Chen, Producing sawdust derived activated carbon
by co-calcinations with limestone for enhanced Acid Orange II
adsorption, J. Cleaner Prod., 168 (2017) 22–29.