References

  1. R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83 (1993) 81–150.
  2. B. Chen, H. Jiang, X. Liu, X. Hu, Molecular insight into water desalination across multilayer graphene oxide membranes, ACS Appl. Mater. Interfaces, 9 (2017) 22826–22836.
  3. J. Pei, L. Huang, H. Jiang, H. Liu, X. Liu, X. Hu. Inhibitory effect of hydrogen ion on the copper ions separation from acid solution across graphene oxide membranes, Sep. Purif. Technol., 210 (2019) 651–658.
  4. L. Paugam, S. Taha, G. Dorange, F. Quéméneur, Influence of ionic composition on nitrate retention by nanofiltration, Ind. Chem. Eng. Res. Des., 81 (2003) 1199–1205.
  5. L. Paugam, S. Taha, J. Cabon, G. Dorange, Elimination of nitrate ions in drinking waters by nanofiltration, Desalination, 152 (2002) 271–274.
  6. L. Paugam, S. Taha, G. Dorange, P. Jaouen, F. Quéméneur, Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition, J. Membr. Sci., 231 (2004) 37–46.
  7. J. Garcia-Aleman, J.M. Dickson, Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membranes: membrane charge inversion phenomena, J. Membr. Sci., 239 (2004) 163–172.
  8. S. Choi, Z. Yun, S. Hong, K. Ahn, The effect of co-existing ions and surface characteristics of nanomembranes on the removal of nitrate and fluoride, Desalination, 133 (2001) 53–64.
  9. D.X. Wang, X.L. Wang, Y. Tomi, M. Ando, T. Shintani, Modelling the separation performance of nanofiltration membranes for the mixed salts solution, J. Membr. Sci., 280 (2006) 734–743.
  10. D.X. Wang, L. Wu, Z.D. Liao, X.L. Wang, Y. Tomi, M. Ando, T. Shintani, Modeling the separation performance of nanofiltration membranes for the mixed salts solution with Mg2+ and Ca2+, J. Membr. Sci., 284 (2006) 384–392.
  11. X.L. Wang, T. Tsuru, S. Nakao, S. Kimura, Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model, J. Membr. Sci., 103 (1995) 117–133.
  12. S. Bandini, Modelling the mechanism of charge formation in NF membranes: theory and application, J. Membr. Sci., 264 (2005) 75–86.
  13. X.L. Wang, W.J. Shang, D.X. Wang, L. Wu, C.H. Tu, Characterization and applications of nanofiltration membranes: state of the art, Desalination, 236 (2009) 316–326.
  14. X.M. Wen, P.H. Ma, C.L. Zhu, Q. He, X.C. Deng, Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration, Sep. Purif. Technol., 49 (2006) 230–236.
  15. G. Yang, H. Shi, W.Q. Liu, W.H. Xing, N.P. Xu, Investigation of Mg2+/Li+ separation by nanofiltration, Chin. J. Chem. Eng., 19 (2011) 586–591.
  16. A. Somrani, A.H. Hamzaoui, M. Pontie, Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO), Desalination, 317 (2013) 184–192.
  17. S.Y. Sun, L.J. Cai, X.Y. Nie, X. Song, J.G. Yu, Separation of magnesium and lithium from brine using a Desal nanofiltration membrane, J. Water Process Eng., 7 (2015) 210–217.
  18. Q. Cheng, Y.S. Guan, Study on separation of magnesium and lithium from brine with high ratio of magnesium to lithium by nanofiltration membrane, Inorg. Chem. Ind., 51 (2019) 35–39 (In Chinese).
  19. D.X. Wang, M. Su, Z.Y. Yu, X.L. Wang, M. Ando, T. Shintani, Separation performance of a nanofiltration membrane influenced by species and concentration of ions, Desalination, 175 (2005) 219–225.
  20. A.G. Volkov, S. Paula, D.W. Deamer, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers, Bioelectrochem. Bioener., 42 (1997) 153–160.
  21. W.N. Wang, D.X. Wang, X.L. Wang, H. Zhao, Experimental investigation on separation of inorganic electrolyte solutions by nanofiltration membranes, J. Chem. Eng. Chin. Univ., 16 (2002) 257–262.
  22. X.L. Wang, T. Tsuru, S. Nakao, S. Kimura, The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes, J. Membr. Sci., 135 (1997) 19–32.
  23. J.M.M. Peeters, J.P. Boom, M.H.V. Mulder, H. Strathmann, Retention measurements of nanofiltration membranes with electrolyte solutions, J. Membr. Sci., 145 (1998) 199–209.
  24. J. Schaep, C. Vandecasteele, A.W. Mohammad, W. Richard Bowen, Analysis of the salt retention of nanofiltration membranes using the Donnan–Steric partitioning pore model, Sep. Sci. Technol., 34 (1999) 3009–3030.
  25. L. Wu, L. Song, X.L. Wang, Y. Tomi, M. Ando, T. Ohara, T. Shintani, Experimental study on separation performance of nanofiltration membranes for bicarbonate salts solution, Desalination, 236 (2009) 299–305.
  26. C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti, Retention of mineral salts by a polyamide nanofiltration membrane, Sep. Purif. Technol., 30 (2003) 47–55.
  27. S. Bandini, D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
  28. A.E. Yaroshchuk, Non-steric mechanism of nanofiltration: superposition of donnan and dielectric exclusion, Sep. Purif. Technol., 22 (2001) 143–158.
  29. W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofiltration-critical assessment and model development, Chem. Eng. Sci., 57 (2002) 1121–1137.