References
- A.C. Lai, D. Yu, J.H. Lee, Mixing of a rosette jet group in a
crossflow, J. Hydraul. Eng., 137 (2011) 787–803.
- O. Abessi, P.J. Roberts, V. Gandhi, Rosette diffusers for dense
effluents, J. Hydraul. Eng., 143 (2016) 06016029.
- O. Abessi, P.J. Roberts, Rosette diffusers for dense effluents
inflowing currents, J. Hydraul. Eng., 144 (2017) 06017024.
- G.C. Christodoulou, I.G. Papakonstantis, I.K. Nikiforakis,
Desalination brine disposal by means of negatively buoyant
jets, Desal. Water Treat., 53 (2015) 3208–3213.
- N. Ahmad, T. Suzuki, Study of dilution, height, and lateral
spread of vertical dense jets in marine shallow water, Water Sci.
Technol., 73 (2016) 2986–2997.
- J.O.G. Pecly, Estimation of the dilution field near a marine
outfall by using effluent turbidity as an environmental tracer
and comparison with dye tracer data, Water Sci. Technol.,
77 (2018) 269–277.
- S.J. Kwon, I.W. Seo, Experimental investigation of wastewater
discharges from a Rosette-type riser using PIV, KSCE J. Civ.
Eng., 9 (2005) 355–362.
- X. Tian, P.J. Roberts, Experiments on marine wastewater
diffusers with multiport rosettes, J. Hydraul. Eng., 137 (2011)
1148–1159.
- A. Dashti, M. Asghari, H. Solymani, M. Rezakazemi, A. Akbari,
Modeling of CaCl2 removal by positively charged polysulfonebased
nanofiltration membrane using artificial neural network
and genetic programming, Desal. Water Treat., 111 (2018)
57–67.
- A.A. Tashvigh, B. Nasernejad, Soft computing method for
modeling and optimization of air and water gap membrane
distillation–a genetic programming approach, Desal. Water
Treat., 76 (2017) 30–39.
- R. Hashim, C. Roy, S. Shamshirband, S. Motamedi, A. Fitri,
D. Petković, K.I. Song, Estimation of wind-driven coastal
waves near a Mangrove forest using adaptive neuro-fuzzy
inference system, Water Resour. Manage., 30 (2016) 2391–2404.
- Y. Peng, X. Zhang, W. Xu, Y. Shi, Z. Zhang, An optimal
algorithm for cascaded reservoir operation by combining the
grey forecasting model with DDDP, Water Sci. Technol. Water
Supply, 18 (2018) 142–150.
- A. Picos, J.M. Peralta-Hernández, Genetic algorithm and
artificial neural network model for prediction of discoloration
dye from an electro-oxidation process in a press-type reactor,
Water Sci. Technol., 78 (2018) 925–935.
- X. Xia, S. Jiang, N. Zhou, X. Li, L. Wang, Genetic algorithm
hyper-parameter optimization using Taguchi design for
groundwater pollution source identification, Water Sci. Technol.
Water Supply, 19 (2019) 137–146.
- A.A. Tashvigh, F.Z. Ashtiani, M. Karimi, A. Okhovat, A novel
approach for estimation of solvent activity in polymer solutions
using genetic programming, Calphad, 51 (2015) 35–41.
- A.A. Tashvigh, F.Z. Ashtiani, A. Fouladitajar, Genetic programming
for modeling and optimization of gas sparging assisted
microfiltration of an oil-in-water emulsion, Desal. Water Treat.,
57 (2016) 19160–19170.
- D.P. Searson, A.H. Gandomi, Handbook of Genetic Programming
Applications, Springer, Cham, 2015, pp. 551–573.
- M.J.S. Safari, A.D. Mehr, Multi-gene genetic programming for
sediment transport modeling in sewers for conditions of nondeposition
with a bed deposit, Int. J. Sediment Res., 33 (2018)
262–270.
- D.S. Pandey, I. Pan, S. Das, J.J. Leahy, W. Kwapinski, Multi-gene
genetic programming based predictive models for municipal
solid waste gasification in a fluidized bed gasifier, Bioresour.
Technol., 179 (2015) 524–533.
- X. Yan, A. Mohammadian, Numerical modeling of vertical
buoyant jets subjected to lateral confinement, J. Hydraul. Eng.,
143 (2017) 04017016.
- X. Yan, A. Mohammadian, Numerical modeling of multiple
inclined dense jets discharged from moderately spaced ports,
Water, 11 (2019) 1–15.
- X. Yan, A. Mohammadian, X. Chen, Three-dimensional
numerical simulations of buoyant jets discharged from a
rosette-type multiport diffuser, J. Mar. Sci. Eng., 7 (2019) 409.
- X. Yan, A. Mohammadian, Multigene genetic-programmingbased
models for initial dilution of laterally confined vertical
buoyant jets, J. Mar. Sci. Eng., 7 (2019) 246.
- X. Yan, A. Mohammadian, Evolutionary modeling of inclined
dense jets discharged from multiport diffusers, J. Coastal Res.,
36 (2019) 362–371.
- X. Yan, A. Mohammadian, Evolutionary prediction of multiple
vertical buoyant jets in stationary ambient water, Desal. Water
Treat., 178 (2020) 41–52.
- S. Zhang, B. Jiang, A.W.K. Law, B. Zhao, Large-eddy simulations
of 45 inclined dense jets, Environ. Fluid Mech., 16 (2016)
101–121.
- N. Ahmad, R.E. Baddour, Density effects on dilution and height
of vertical fountains, J. Hydraul. Eng., 141 (2015) 04015024.
- A. Guven, M. Gunal, Prediction of scour downstream of gradecontrol
structures using neural networks, J. Hydraul. Eng.,
134 (2008) 1656–1660.
- H. Bashiri, E. Sharifi, V.P. Singh, Prediction of local scour depth
downstream of sluice gates using harmony search algorithm
and artificial neural networks, J. Irrig. Drain. Eng., 144 (2018)
06018002.
- C.J. Willmott, K. Matsuura, Advantages of the mean absolute
error (MAE) over the root mean square error (RMSE) in
assessing average model performance, Clim. Res., 30 (2005)
79–82.
- M.V. Shcherbakov, A. Brebels, N.L. Shcherbakova, A.P. Tyukov,
T.A. Janovsky, V.A.E. Kamaev, A survey of forecast error
measures, World Appl. Sci. J., 24 (2013) 171–176.
- G.A.F. Seber, C.J. Wild, Nonlinear Regression, John Wiley &
Sons, New York, 1989.
- T.P. Lane, W.H. DuMouchel, Simultaneous confidence intervals
in multiple regression, Am. Stat., 48 (1994) 315–321.
- K.D. Dolan, L. Yang, C.P. Trampel, Nonlinear regression
technique to estimate kinetic parameters and confidence
intervals in unsteady-state conduction-heated foods, J. Food
Eng., 80 (2007) 581–593.