References

  1. A. Pedraza, M.D. Sicilia, S. Rubio, D. P′erez-Bendito, Assessment of the surfactant-dye binding degree method as an alternative to the methylene blue method for the determination of anionic surfactants in aqueous environmental samples, Anal. Chim. Acta, 588 (2007) 252–260.
  2. K. Hąc-Wydro, I. Pałasińska, P. Miśkowiec, The comparative studies on the ability of anionic surfactants to bind lead(II) ions, J. Mol. Liq., 219 (2016) 1071–1077.
  3. V. Gomez, L. Ferreres, E. Pocurull, F. Borrull, Determination of non-ionic and anionic surfactants in environmental water matrices, Talanta, 84 (2011) 859–866.
  4. A. Cuzzola, M. Bernini, P. Salvadori, A preliminary study on iron species as heterogeneous catalysts for the degradation of linear alkyl benzene sulphonic acids by H2O2, Appl. Catal., B, 36 (2002) 231–237.
  5. C. Mihali, G. Oprea, E. Cical, Determination of critical micellar concentration of anionic surfactants using surfactants–sensible electrodes, Chem. Bull. Politehnica Univ., 53 (2008) 1–2.
  6. A. Beyaz, W.S. Oh, V.P. Reddy, Ionic liquids as modulators of the critical micelle concentration of sodium dodecyl sulfate, Colloids Surf., B, 35 (2004) 119–124.
  7. X. Cai, W. Yang, L. Huang, Q. Zhu, S. Liu, A series of sensitive and visible fluorescence-turn-on probes for CMC of ionic surfactants: design, synthesis, structure influence on CMC and sensitivity, and fast detection via a plate reader and a UV light, Sens. Actuators, B, 219 (2015) 251–260.
  8. N. Azum, A.Z. Naqvi, M.A. Rub, A.M. Asiri, Multi-technique approach towards amphiphilic drug-surfactant interaction: a physicochemical study, J. Mol. Liq., 240 (2017) 189–195.
  9. A. Vishnyakov, M.T. Lee, A.V. Neimark, Prediction of the critical miçelle concentration of nonionic surfactants by dissipative particle dynamics simulations, J. Phys. Chem. Lett., 4 (2013) 797–802.
  10. D. Yu, F. Huang, H. Xua, Determination of critical concentrations by synchronous fluorescence spectrometry, Anal. Methods, 4 (2012) 47.
  11. E. Mohajerı, G.D. Noudeh, Effect of temperature on the critical micelle concentration and micellization thermodynamic of nonionic surfactants: polyoxyethylene sorbitan fatty acid esters, E-J. Chem., 9 (2012) 2268–2274.
  12. X. Mao, R. Jiang, W. Xiao, J. Yu, Use of surfactants for the remediation of contaminated soils: a review, J. Hazard. Mater., 285 (2015) 419–435.
  13. H.-D. Choi, J.-M. Choa, K. Baeka, J.-S. Yang, J.-Y. Lee, Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon, J. Hazard. Mater., 161 (2009) 1565–1568.
  14. P. Esmaeilzadeh, A. Bahramian, Z. Fakhroueian, Adsorption of anionic, cationic and nonionic surfactants on carbonate rock in the presence of ZrO2 nanoparticles, Physics Procedia, 22 (2011) 63–67.
  15. R.G. Chaudhuri, S. Paria, Effect of electrolytes on wettability of glass surface using anionic and cationic surfactant solutions, J. Colloid Interface Sci., 413 (2014) 24–30.
  16. M. Ishiguro, L.K. Koopal, Surfactant adsorption to soil components and soils, Adv. Colloid Interface Sci., 231 (2016) 59–102.
  17. S. Paria, Surfactant-enhanced remediation of organic contaminated soil and water, Adv. Colloid Interface Sci., 138 (2008) 24–58.
  18. K.K. Brandt, M. Hesselsøe, P. Roslev, K. Henriksen, J. Sørensen, Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains, Appl. Environ. Microbiol., 67 (2001) 2489–2498.
  19. E.M. Song, D.W. Kim, J.C. Lim, Effect of adsorption of Laureth sulfonic acid type anionic surfactant on the wetting property of CaCO3 substrate, J. Ind. Eng. Chem., 28 (2015) 351–358.
  20. M.A. Rub, N. Azum, A.M. Asiri, S.Y.M. Alfaifi, S.S. Alharthi, Interaction between antidepressant drug and anionic surfactant in low concentration range in aqueous/salt/urea solution: a conductometric and fluorometric study, J. Mol. Liq., 227 (2017) 1–14.
  21. F. Khan, M.S. Sheikh, M.A. Rub, N. Azum, A.M. Asiri, Antidepressant drug amitriptyline hydrochloride (AMT) interaction with anionic surfactant sodium dodecyl sulfate in aqueous/brine/urea solutions at different temperatures, J. Mol. Liq., 222 (2016) 1020–1030.
  22. G. Erpul, Soil Science, Ankara University, Faculty of Agriculture, Ankara-Turkey, 2014.
  23. M.F. Küçükaşık, Surfactant Sorption, and Desorption on Soil Surfaces of Varying Clay Content, Boğaziçi University, Institute of Science and Technology, Turkey, 1998.
  24. S.K. Mehta, S. Chaudhary, Micropartioning and solubilization enhancement of 1,2-bis(bis(4-chlorophenyl) methyl) diselane in mixed micelles of binary and ternary cationic–nonionic surfactant mixtures, Colloids Surf., B, 83 (2011) 139–147.
  25. M.A. Rub, N. Azum, F. Khan, A.M. Asiri, Aggregation of a sodium salt of ibuprofen and sodium taurocholate mixture in different media: a tensiometry and fluorometry study, J. Chem. Thermodyn., 121 (2018) 199–210.
  26. N. Azum, M.A. Rub, A.M. Asiri, H.A. Kashmery, Synergistic effect of an antipsychotic drug chlorpromazine hydrochloride with pluronic triblock copolymer: a physicochemical study, J. Mol. Liq., 260 (2018) 159–165.
  27. N. Azum, M.A. Rub, A.M. Asiri, Interaction of antipsychotic drug with novel surfactants: micellization and binding studies, Chin. J. Chem. Eng., 26 (2018) 566–573.
  28. L.J. Waters, T. Hussain, G.M.B. Parkes, Titration calorimetry of surfactant–drug interactions: micelle formation and saturation studies, J. Chem. Thermodyn., 53 (2012) 36–41.
  29. N.A. Negma, M.R. Mishrif, D.E. Mohamed, Vanillin based cationic surfactants mixed systems: micellization and interfacial interaction behaviors in the presence of nonionic conventional surfactant, Colloids Surf., A, 480 (2015) 122–129.
  30. N. Dutta Gupta, D. Banerjee, N.S. Das, K.K. Chattopadhyay, Kinetics of micelle formation and their effect on the optical and structural properties of polypyrrole nanoparticles, Colloids Surf., A, 385 (2011) 55–62.
  31. Linear Alkylbenzene Sulphonate (LAS), Human and Environmental Risk Assessment (HERA) Report, 2013. Available at: https://www.heraproject.com/files/HERA-LAS%20 revised%20April%202013%20Final1.pdf, (accessed 15 November 2018).
  32. S.J. Park, C.R. Hong, S.J. Choi, Citral degradation in micellar structures formed with polyoxyethylene-type surfactants, Food Chem., 170 (2015) 443–447.
  33. A. Thomas, Colloidal Phenomena, 2004. Available at: https:// www.mpikg.mpg.de/886719/MicelleFormation.pdf, (accessed 15 November 2018).
  34. H.M. Başar, N. Deveci Aksoy, Recovery applıcatıons of waste foundry sand, J. Eng. Natural Sci., Sigma, 30 (2012) 205–224.
  35. Y. Ma, X. Yuan, X. Peng, H. Wang, H. Huang, S. Bao, H. Liu, Z. Xiao, G. Zeng, The pseudo-ternary phase diagrams and properties of anionic–nonionic mixed surfactant reverse micellar systems, J. Mol. Liq., 203 (2015) 181–186.