References

  1. B.S. Akin, A. Ugurlu, Monitoring, and control of biological nutrient removal in a sequencing batch reactor, Process Biochem., 40 (2005) 2873–2878.
  2. A. Asadi, A.A.L. Zinatizadeh, S. Sumathi, Simultaneous removal of carbon and nutrients from an industrial estate wastewater in a single up-flow aerobic/anoxic sludge bed (UAASB) bioreactor, Water Res., 46 (2012) 4587–4598.
  3. S. Jafarinejad, Recent developments in the application of sequencing batch reactor (SBR) technology for the petroleum industry wastewater treatment, Chem. Int., 3 (2017) 342–350.
  4. G. Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater Engineering: Treatment and Reuse, 4th ed., Metcalf & Eddy, McGraw Hill Education, 2003.
  5. C.J. Lan, M. Kumar, C.C. Wang, J.G. Lin, Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor, Bioresour. Technol., 102 (2011) 5514–5519.
  6. L.K. Wang, N.K. Shammas, Sequencing Batch Reactor Technology, In: Environmental Biotechnology, Humana Press, 2010, pp. 721–747.
  7. C.H. Chang, O.J. Hao, Sequencing batch reactor system for nutrient removal: ORP and pH profiles, J. Chem. Technol. Biotechnol., 67 (1996) 27–38.
  8. J.L. Campos, J.M. Garrido-Fernandez, R. Mendez, J.M. Lema, Nitrification at high ammonia loading rates in an activated sludge unit, Bioresour. Technol., 68 (1999) 141–148.
  9. M.C. Wentzel, G.A. Ekama, P.L. Dold, G. Marais, Biological excess phosphorus removal-steady state process design, Water SA, 16 (1990) 29–48.
  10. E. Dalentoft, P. Thulin, The use of aerobic selectors in activated sludge systems for treatment of wastewater from the pulp and paper industry, Water Sci. Technol., 35 (1997) 181–188.
  11. C. Fux, M. Boehler, P. Huber, I. Brunner, H. Siegrist, Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant, J. Biotechnol., 99 (2002) 295–306.
  12. D.C. Van Der Post, C.F. Schutte, A proposed chemical mechanism for biological phosphate removal in activated sludge treatment of wastewater, Water SA, 29 (2003) 125–128.
  13. D. Li, Y. Lv, H. Zeng, J. Zhang, Enhanced biological phosphorus removal using granules in a continuous-flow reactor, Chem. Eng. J., 298 (2016) 107–116.
  14. S. Rezaee, A.A.L. Zinatizadeh, A. Asadi, Comparative study on effect of mechanical mixing and ultrasound on the performance of a single up-flow anaerobic/aerobic/anoxic bioreactor removing CNP from milk processing wastewater, J. Taiwan Inst. Chem. Eng., 58 (2016) 297–309.
  15. A. Mullan, J.W. McGrath, T. Adamson, S. Irwin, J.P. Quinn, Pilot-scale evaluation of the application of low pH-inducible polyphosphate accumulation to the biological removal of phosphate from wastewaters, Environ. Sci. Technol., 40 (2006) 296–301.
  16. D.B. Wang, X.M. Li, Q. Yang, G.M. Zeng, D.X. Liao, J. Zhang, Biological phosphorus removal in sequencing batch reactor with single-stage oxic process, Bioresour. Technol., 99 (2008) 5466–5473.
  17. D. Wang, W. Zheng, X. Li, Q. Yang, D. Liao, G. Zeng, Evaluation of the feasibility of alcohols serving as external carbon sources for biological phosphorus removal induced by the oxic/ extended idle regime, Biotechnol. Bioeng., 110 (2013a) 827–837.
  18. D. Wang, W. Zheng, D. Liao, X. Li, Q. Yang, G. Zeng, Effect of initial pH control on biological phosphorus removal induced by the aerobic/extended-idle regime, Chemosphere, 90 (2013b) 2279–2287.
  19. D. Wang, Q. Xu, W. Yang, H. Chen, X. Li, D. Liao, G. Zeng, A new configuration of sequencing batch reactor operated as a modified aerobic/extended-idle regime for simultaneously saving reactor volume and enhancing biological phosphorus removal, Biochem. Eng. J., 87 (2014) 15–24.
  20. D. Wang, X. Li, Q. Yang, W. Zheng, Y. Wu, T. Zeng, G. Zeng, Improved biological phosphorus removal performance driven by the aerobic/extended idle regime with propionate as the sole carbon source, Water Res., 46 (2012) 3868–3878.
  21. M.C. Goronszy, Coupled Nitrogen and Phosphorus Removal in a Cyclic Activated Sludge System, In: Nutrient Removal from Wastewaters, 1992, pp. 347–363.
  22. H. Ma, S. Zhang, X. Lu, B. Xi, X. Guo, H. Wang, J. Duan, Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/ acidogenesis pretreatment, Bioresour. Technol., 116 (2012) 441–447.
  23. M.C. Goronszy, N. Slater, D. Konicki. The cyclic activated sludge system for resort area wastewater treatment, Water Sci. Technol., 32 (1995) 105–114.
  24. American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, 23rd ed., Washington, D.C., USA, 2005.
  25. G. Demoulin, M.C. Goronszy, K. Wutscher, E. Forsthuber, Co-current nitrification/denitrification and biological P-removal in cyclic activated sludge plants by redox controlled cycle operation, Water Sci. Technol., 35 (1997) 215–224.
  26. A. Van Haandel, J. Van Der Lubbe, Handbook Biological Waste Water Treatment-Design and Optimization of Activated Sludge Systems, Webshop Wastewater Handbook, 2007.
  27. S. Rezaee, A.A.L. Zinatizadeh, A. Asadi, High rate CNP removal from a milk processing wastewater in a single ultrasound augmented up-flow anaerobic/aerobic/anoxic bioreactor, Ultrason. Sonochem., 23 (2015) 289–301.
  28. A. Asadi, A.A. Zinatizadeh, M. Van Loosdrecht, A novel continuous feed and intermittent discharge airlift bioreactor (CFIDAB) for enhanced simultaneous removal of carbon and nutrients from soft drink industrial wastewater, Chem. Eng. J., 292 (2016) 13–27.
  29. L. Ying, G. AI-Jun, Z. Jing, Study of treating high ammonia-N domestic wastewater with CASS process, Procedia Environ. Sci., 11 (2011) 858–863.
  30. C. Li, S. Liu, T. Ma, M. Zheng, J. Ni, Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature, Chemosphere, 229 (2019) 132–141.
  31. G.J.F. Smolders, J. Van der Meij, M.C.M. Van Loosdrecht, J.J. Heijnen, Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence, Biotechnol. Bioeng., 43 (1994) 461–470.
  32. C.O. Jeon, D.S. Lee, M.W. Lee, J.M. Park, Enhanced biological phosphorus removal in an anaerobic–aerobic sequencing batch reactor: effect of pH, Water Environ. Res., 73 (2001) 301–306.
  33. U.G. Erdal, Z.K. Erdal, C.W. Randall, The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR (enhanced biological phosphorus removal) systems at different temperatures and the effects on system performance, Water Sci. Technol., 47 (2003) 1–8.
  34. T. Panswad, A. Doungchai, J. Anotai, Temperature effect on microbial community of enhanced biological phosphorus removal system, Water Res., 37 (2003) 409–415.
  35. H. Chen, Y. Liu, B.J. Ni, Q. Wang, D. Wang, C. Zhang, G. Zeng, Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area, Biochem. Eng. J., 113 (2016) 114–122.
  36. T. Kuba, A. Wachtmeister, M.C.M. Van Loosdrecht, J.J. Heijnen, Effect of nitrate on phosphorus release in biological phosphorus removal systems, Water Sci. Technol., 30 (1994) 263–269.
  37. M. Pan, X. Huang, G. Wu, Y. Hu, Y. Yang, X. Zhan, Performance of denitrifying phosphate removal via nitrite from slaughterhouse wastewater treatment at low temperature, Water, 9 (2017) 818.