References

  1. A. Kortenkamp, M. Faust, M. Scholze, T. Backhaus, Low-level exposure to multiple chemicals: reason for human health concerns?, Environ. Health Perspect., 115 (2007) 106–114.
  2. J. Fawell, C.N. Ong, Emerging contaminants and the implications for drinking water, Int. J Water Resour. Dev., 28 (2012) 247–263.
  3. V. Yangali-Quintanilla, S.K. Maeng, T. Fujioka, M. Kennedy, G. Amy, Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse, J. Membr. Sci., 362 (2010) 334–345.
  4. L.D. Nghiem, A.I. Schäfer, M. Elimelech, Pharmaceutical retention mechanisms by nanofiltration membranes, Environ. Sci. Technol., 39 (2005) 7698–7705.
  5. A.Q. Jones, C.E. Dewey, K. Doré, S.E. Majowicz, S.A. McEwen, W. David, M. Eric, D.J. Carr, S.J. Henson, Public perceptions of drinking water: a postal survey of residents with private water supplies, BMC Public Health, 6 (2006) 94.
  6. F. Barbosa Jr., A. Campiglia, B. Rocha, D. Cyr, Contaminants of emerging concern: from the detection to their effects on human health, Biomed. Res. Int., 2016 (2016) 1–2.
  7. S.Y. Wee, A.Z. Aris, Occurrence and public-perceived risk of endocrine disrupting compounds in drinking water, npj Clean Water, 2 (2019) 1–14.
  8. D.T. Adamson, E.A. Piña, A.E. Cartwright, S.R. Rauch, R. Hunter Anderson, T. Mohr, J.A. Connor, 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule, Sci. Total Environ., 596–597 (2017) 236–245.
  9. A. Abe, Distribution of 1,4-dioxane in relation to possible sources in the water environment, Sci. Total Environ., 227 (1999) 41–47.
  10. R. Chen, C. Liu, N.W. Johnson, L. Zhang, S. Mahendra, Y. Liu, Y. Dong, M. Chen, Removal of 1,4-dioxane by titanium silicalite-1: separation mechanisms and bioregeneration of sorption sites, Chem. Eng. J., 371 (2019) 193–202.
  11. D.T. Adamson, S. Mahendra, K.L. Walker, S.R. Rauch, S. Sengupta, C.J. Newell, A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater sites, Environ. Sci. Technol. Lett., 1 (2014) 254–258.
  12. National Toxicology Program, Bioassay of 1,4-dioxane for Possible Carcinogenicity, Natl. Cancer Inst. Carcinog. Tech. Rep. Ser., 80 (1978) 1–123.
  13. M.J. Zenker, R.C. Borden, M.A. Barlaz, Occurrence and treatment of 1,4-dioxane in aqueous environments, Environ. Eng. Sci., 20 (2003) 423–432.
  14. U.S. EPA, IRIS Toxicological Review of 1,4-Dioxane, Final Report, Washington, DC, 2010.
  15. S. Zhang, P.B. Gedalanga, S. Mahendra, Advances in bioremediation of 1,4-dioxane-contaminated waters, J. Environ. Manage., 204 (2017) 765–774.
  16. T.K.G. Mohr, Solvent Stabilizers White Paper, Santa Clara Valley Water District, Santa Clara, CA, 2001, pp. 1–52.
  17. A.C. McElroy, M.R. Hyman, D.R.U. Knappe, 1,4-Dioxane in drinking water: emerging for 40 years and still unregulated, Curr. Opin. Environ. Sci. Health, 7 (2019) 117–125.
  18. D.K. Stepien, P. Diehl, J. Helm, A. Thoms, W. Püttmann, Fate of 1,4-dioxane in the aquatic environment: from sewage to drinking water, Water Res., 48 (2014) 406–419.
  19. S. Budavari, M.J. O’Neil, A. Smith, P. Heckelman, The Merck Index, Merck & Co. Inc., Rahway, NJ, 1989.
  20. L.H. Keith, D.B. Walters, Compendium of Safety Data Sheets for Research and Industrial Chemicals, VCH, Deerfield Beach, FL, 1986.
  21. K. Verschueren, Handbook of Environmental Data on Organic Chemicals, Van Nostrand Reinhold Co., New York, NY, 1983.
  22. P.H. Howard, Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Lewis Publishers, Chelsea, MI, 1989.
  23. J.H. Suh, M. Mohseni, A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide, Water Res., 38 (2004) 2596–2604.
  24. W. DiGuiseppi, C. Walecka‐Hutchison, J. Hatton, 1,4‐Dioxane treatment technologies, Rem. J., 27 (2016) 71–92.
  25. S. Chitra, K. Paramasivan, M. Cheralathan, P.K. Sinha, Degradation of 1,4-dioxane using advanced oxidation processes, Environ. Sci. Pollut. Res., 19 (2012) 871–878.
  26. T. Vescovi, H.M. Coleman, R. Amal, The effect of pH on UV-based advanced oxidation technologies – 1,4-dioxane degradation, J. Hazard. Mater., 182 (2010) 75–79.
  27. M.J. McGuire, I.H. Suffet, J.V. Radziul, Assessment of unit processes for the removal of trace organic compounds from drinking water, J. Am. Water Works Assoc., 70 (1978) 565–572.
  28. M.M. Johns, W.E. Marshall, C.A. Toles, Agricultural by‐products as granular activated carbons for adsorbing dissolved metals and organics, J. Chem. Technol. Biotechnol., 71 (1998) 131–140.
  29. S. Woodard, T. Mohr, M.G. Nickelsen, Synthetic media: a promising new treatment technology for 1,4‐dioxane, Rem. J., 24 (2014) 27–40.
  30. C.D. Adams, P.A. Scanlan, N.D. Secrist, Oxidation and biodegradability enhancement of 1,4-dioxane using hydrogen peroxide and ozone, Environ. Sci. Technol., 28 (1994) 1812–1818.
  31. M.I. Stefan, J.R. Bolton, Mechanism of the degradation of 1,4-dioxane in dilute aqueous solution using the UV/hydrogen peroxide process, Environ. Sci. Technol., 32 (1998) 1588–1595.
  32. H.M. Coleman, V. Vimonses, G. Leslie, R. Amal, Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes, J. Hazard. Mater., 146 (2007) 496–501.
  33. H. Son, J. Im, K. Zoh, A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light, Water Res., 43 (2009) 1457–1463.
  34. V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Light-assisted 1,4-dioxane degradation, Chemosphere, 35 (1997) 2675–2688.
  35. B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele, Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration, J. Membr. Sci., 156 (1999) 29–41.
  36. L.D. Nghiem, T. Fujioka, Removal of Emerging Contaminants for Water Reuse by Membrane Technology, N.P. Hankins, R. Singh, Eds., Emerging Membrane Technology for Sustainable Water Treatment, Elsevier, Amsterdam, Netherlands, 2016, pp. 217–247.
  37. B. Van der Bruggen, C. Vandecasteele, Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry, Environ. Pollut., 122 (2003) 435–445.
  38. S.J. Duranceau, J.S. Taylor, L.A. Mulford, SOC removal in a membrane softening process, J. Am. Water Works Assoc., 84 (1992) 68–78.
  39. K. Košutić, L. Kaštelan-Kunst, B. Kunst, Porosity of some commercial reverse osmosis and nanofiltration polyamide thin- film composite membranes, J. Membr. Sci., 168 (2000) 101–108.
  40. K. Košutić, L. Furač, L. Sipos, B. Kunst, Removal of arsenic and pesticides from drinking water by nanofiltration membranes, Sep. Purif. Technol., 42 (2005) 137–144.
  41. S. Darvishmanesh, J. Degrève, B. Van der Bruggen, Mechanisms of solute rejection in solvent resistant nanofiltration: the effect of solvent on solute rejection, Phys. Chem. Chem. Phys., 12 (2010) 13333–13342.
  42. T.-J. Liu, E.-E. Chang, P.-C. Chiang, Effects of concentrations and types of natural organic matters on rejection of compounds of emerging concern by nanofiltration, Desal. Water Treat., 51 (2013) 6929–6939.
  43. A.M. Comerton, R.C. Andrews, D.M. Bagley, The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration, Water Res., 43 (2009) 613–622.
  44. C.Y. Tang, S. Fu, C.S. Criddle, J.O. Leckie, Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater, Environ. Sci. Technol., 41 (2007) 2008–2014.
  45. E. Steinle-Darling, M. Reinhard, Nanofiltration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of perfluorochemicals, Environ. Sci. Technol., 42 (2008) 5292–5297.
  46. C. Bellona, J.E. Drewes, P. Xu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment— a literature review, Water Res., 38 (2004) 2795–2809.
  47. J. Marriott, E. Sørensen, A general approach to modelling membrane modules, Chem. Eng. Sci., 58 (2003) 4975–4990.
  48. Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, J. Membr. Sci., 263 (2005) 38–46.
  49. R. Schlögl, Membrane permeation in systems far from equilibrium, Ber. Bunsen Ges. Phys. Chem., 70 (2010) 400–414.
  50. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
  51. O. Kedem, A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 27 (1958) 229–246.
  52. K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  53. W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes — use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91–105.
  54. H.K. Lonsdale, U. Merten, R.L. Riley, Transport properties of cellulose acetate osmotic membranes, J. Appl. Polym. Sci., 9 (1965) 1341–1362.
  55. W.R. Bowen, A.W. Mohammad, Characterization and prediction of nanofiltration membrane performance—a general assessment, Chem. Eng. Res. Des., 76 (1998) 885–893.
  56. A.W. Mohammad, N. Hilal, H. Al-Zoubi, N.A. Darwish, Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes, J. Membr. Sci., 289 (2007) 40–50.
  57. A.D. Shah, C. Huang, J. Kim, Mechanisms of antibiotic removal by nanofiltration membranes: model development and application, J. Membr. Sci., 389 (2012) 234–244.
  58. H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad, Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler– Kedem model, Desalination, 206 (2007) 42–60.
  59. S. Koter, Determination of the parameters of the Spiegler– Kedem–Katchalsky model for nanofiltration of single electrolyte solutions, Desalination, 198 (2006) 335–345.
  60. A.M. Hidalgo, G. León, M. Gómez, M.D. Murcia, E. Gómez, J.L. Gómez, Application of the Spiegler–Kedem–Kachalsky model to the removal of 4-chlorophenol by different nanofiltration membranes, Desalination, 315 (2013) 70–75.
  61. J.L.C. Santos, P. de Beukelaar, I.F.J. Vankelecom, S. Velizarov, J.G. Crespo, Effect of solute geometry and orientation on the rejection of uncharged compounds by nanofiltration, Sep. Purif. Technol., 50 (2006) 122–131.
  62. A.R.D. Verliefde, E.R. Cornelissen, S.G.J. Heijman, Verberk, J.Q.J.C. Verberk, G.L. Amy, B. Van der Bruggen, J.C. van Dijk, Construction and validation of a full-scale model for rejection of organic micropollutants by NF membranes, J. Membr. Sci., 339 (2009) 10–20.
  63. X. Wang, B. Li, T. Zhang, X. Li, Performance of nanofiltration membrane in rejecting trace organic compounds: experiment and model prediction, Desalination, 370 (2015) 7–16.
  64. O. Labban, C. Liu, T.H. Chong, J.H. Lienhard V, Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening, J. Membr. Sci., 521 (2017) 18–32.
  65. J. Wang, D.S. Dlamini, A.K. Mishra, M.T.M. Pendergast, M.C.Y. Wong, B.B. Mamba, V. Freger, A.R.D. Verliefdee, E.M.V. Hoek, A critical review of transport through osmotic membranes, J. Membr. Sci., 454 (2014) 516–537.
  66. L.A. Mulford, J.S. Taylor, D.M. Nickerson, S.S. Chen, NF performance at full and pilot scale, J. Am. Water Works Assoc., 91 (1999) 64–75.
  67. Y. Zhao, Modeling of Membrane Solute Mass Transfer in NF/RO Membrane Systems, University of Central Florida, 2004.
  68. Y. Zhao, J.S. Taylor, Incorporation of osmotic pressure in an integrated incremental model for predicting RO or NF permeate concentration, Desalination, 174 (2005) 145–159.
  69. T.K. Sherwood, P.L.T. Brian, R.E. Fisher, Desalination by reverse osmosis, Ind. Eng. Chem. Fundam., 6 (1967) 2–12.
  70. S. Jeffery-Black, S.J. Duranceau, C. Franco, Caffeine removal and mass transfer in a nanofiltration membrane process, Desal. Water Treat., 59 (2017) 1–10.
  71. A.M. Hidalgo, G. León, M. Gómez, M.D. Murcia, D.S. Barbosa, P. Blanco, Application of the solution-diffusion model for the removal of atrazine using a nanofiltration membrane, Desal. Water. Treat., 51 (2013) 2244–2252.
  72. S. Jeffery-Black, S.J. Duranceau, Mass transfer and transient response time of a split-feed nanofiltration pilot unit, Desal. Water Treat., 57 (2016) 25388–25398.
  73. M.J. López-Muñoz, A. Sotto, J.M. Arsuaga, B. Van der Bruggen, Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes, Sep. Purif. Technol., 66 (2009) 194–201.
  74. X. Jin, J. Hu, S.L. Ong, Removal of natural hormone estrone from secondary effluents using nanofiltration and reverse osmosis, Water Res., 44 (2010) 638–648.