References
- A. Kortenkamp, M. Faust, M. Scholze, T. Backhaus, Low-level
exposure to multiple chemicals: reason for human health
concerns?, Environ. Health Perspect., 115 (2007) 106–114.
- J. Fawell, C.N. Ong, Emerging contaminants and the
implications for drinking water, Int. J Water Resour. Dev.,
28 (2012) 247–263.
- V. Yangali-Quintanilla, S.K. Maeng, T. Fujioka, M. Kennedy,
G. Amy, Proposing nanofiltration as acceptable barrier for
organic contaminants in water reuse, J. Membr. Sci., 362 (2010)
334–345.
- L.D. Nghiem, A.I. Schäfer, M. Elimelech, Pharmaceutical
retention mechanisms by nanofiltration membranes, Environ.
Sci. Technol., 39 (2005) 7698–7705.
- A.Q. Jones, C.E. Dewey, K. Doré, S.E. Majowicz, S.A. McEwen,
W. David, M. Eric, D.J. Carr, S.J. Henson, Public perceptions of
drinking water: a postal survey of residents with private water
supplies, BMC Public Health, 6 (2006) 94.
- F. Barbosa Jr., A. Campiglia, B. Rocha, D. Cyr, Contaminants of
emerging concern: from the detection to their effects on human
health, Biomed. Res. Int., 2016 (2016) 1–2.
- S.Y. Wee, A.Z. Aris, Occurrence and public-perceived risk
of endocrine disrupting compounds in drinking water, npj
Clean Water, 2 (2019) 1–14.
- D.T. Adamson, E.A. Piña, A.E. Cartwright, S.R. Rauch, R. Hunter
Anderson, T. Mohr, J.A. Connor, 1,4-Dioxane drinking water
occurrence data from the third unregulated contaminant
monitoring rule, Sci. Total Environ., 596–597 (2017) 236–245.
- A. Abe, Distribution of 1,4-dioxane in relation to possible sources
in the water environment, Sci. Total Environ., 227 (1999) 41–47.
- R. Chen, C. Liu, N.W. Johnson, L. Zhang, S. Mahendra,
Y. Liu, Y. Dong, M. Chen, Removal of 1,4-dioxane by titanium
silicalite-1: separation mechanisms and bioregeneration of
sorption sites, Chem. Eng. J., 371 (2019) 193–202.
- D.T. Adamson, S. Mahendra, K.L. Walker, S.R. Rauch,
S. Sengupta, C.J. Newell, A multisite survey to identify the
scale of the 1,4-dioxane problem at contaminated groundwater
sites, Environ. Sci. Technol. Lett., 1 (2014) 254–258.
- National Toxicology Program, Bioassay of 1,4-dioxane for
Possible Carcinogenicity, Natl. Cancer Inst. Carcinog. Tech.
Rep. Ser., 80 (1978) 1–123.
- M.J. Zenker, R.C. Borden, M.A. Barlaz, Occurrence and
treatment of 1,4-dioxane in aqueous environments, Environ.
Eng. Sci., 20 (2003) 423–432.
- U.S. EPA, IRIS Toxicological Review of 1,4-Dioxane, Final
Report, Washington, DC, 2010.
- S. Zhang, P.B. Gedalanga, S. Mahendra, Advances in bioremediation
of 1,4-dioxane-contaminated waters, J. Environ.
Manage., 204 (2017) 765–774.
- T.K.G. Mohr, Solvent Stabilizers White Paper, Santa Clara
Valley Water District, Santa Clara, CA, 2001, pp. 1–52.
- A.C. McElroy, M.R. Hyman, D.R.U. Knappe, 1,4-Dioxane in
drinking water: emerging for 40 years and still unregulated,
Curr. Opin. Environ. Sci. Health, 7 (2019) 117–125.
- D.K. Stepien, P. Diehl, J. Helm, A. Thoms, W. Püttmann, Fate
of 1,4-dioxane in the aquatic environment: from sewage to
drinking water, Water Res., 48 (2014) 406–419.
- S. Budavari, M.J. O’Neil, A. Smith, P. Heckelman, The Merck
Index, Merck & Co. Inc., Rahway, NJ, 1989.
- L.H. Keith, D.B. Walters, Compendium of Safety Data Sheets for
Research and Industrial Chemicals, VCH, Deerfield Beach, FL,
1986.
- K. Verschueren, Handbook of Environmental Data on Organic
Chemicals, Van Nostrand Reinhold Co., New York, NY, 1983.
- P.H. Howard, Handbook of Environmental Fate and Exposure
Data for Organic Chemicals, Lewis Publishers, Chelsea, MI,
1989.
- J.H. Suh, M. Mohseni, A study on the relationship between
biodegradability enhancement and oxidation of 1,4-dioxane
using ozone and hydrogen peroxide, Water Res., 38 (2004)
2596–2604.
- W. DiGuiseppi, C. Walecka‐Hutchison, J. Hatton, 1,4‐Dioxane
treatment technologies, Rem. J., 27 (2016) 71–92.
- S. Chitra, K. Paramasivan, M. Cheralathan, P.K. Sinha,
Degradation of 1,4-dioxane using advanced oxidation processes,
Environ. Sci. Pollut. Res., 19 (2012) 871–878.
- T. Vescovi, H.M. Coleman, R. Amal, The effect of pH on
UV-based advanced oxidation technologies – 1,4-dioxane
degradation, J. Hazard. Mater., 182 (2010) 75–79.
- M.J. McGuire, I.H. Suffet, J.V. Radziul, Assessment of unit
processes for the removal of trace organic compounds from
drinking water, J. Am. Water Works Assoc., 70 (1978) 565–572.
- M.M. Johns, W.E. Marshall, C.A. Toles, Agricultural by‐products
as granular activated carbons for adsorbing dissolved metals
and organics, J. Chem. Technol. Biotechnol., 71 (1998) 131–140.
- S. Woodard, T. Mohr, M.G. Nickelsen, Synthetic media: a
promising new treatment technology for 1,4‐dioxane, Rem. J.,
24 (2014) 27–40.
- C.D. Adams, P.A. Scanlan, N.D. Secrist, Oxidation and
biodegradability enhancement of 1,4-dioxane using hydrogen
peroxide and ozone, Environ. Sci. Technol., 28 (1994)
1812–1818.
- M.I. Stefan, J.R. Bolton, Mechanism of the degradation of
1,4-dioxane in dilute aqueous solution using the UV/hydrogen
peroxide process, Environ. Sci. Technol., 32 (1998) 1588–1595.
- H.M. Coleman, V. Vimonses, G. Leslie, R. Amal, Degradation
of 1,4-dioxane in water using TiO2 based photocatalytic and
H2O2/UV processes, J. Hazard. Mater., 146 (2007) 496–501.
- H. Son, J. Im, K. Zoh, A Fenton-like degradation mechanism
for 1,4-dioxane using zero-valent iron (Fe0) and UV light, Water
Res., 43 (2009) 1457–1463.
- V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Light-assisted
1,4-dioxane degradation, Chemosphere, 35 (1997)
2675–2688.
- B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele,
Influence of molecular size, polarity and charge on the retention
of organic molecules by nanofiltration, J. Membr. Sci., 156 (1999)
29–41.
- L.D. Nghiem, T. Fujioka, Removal of Emerging Contaminants
for Water Reuse by Membrane Technology, N.P. Hankins, R.
Singh, Eds., Emerging Membrane Technology for Sustainable
Water Treatment, Elsevier, Amsterdam, Netherlands, 2016, pp.
217–247.
- B. Van der Bruggen, C. Vandecasteele, Removal of pollutants
from surface water and groundwater by nanofiltration: overview
of possible applications in the drinking water industry,
Environ. Pollut., 122 (2003) 435–445.
- S.J. Duranceau, J.S. Taylor, L.A. Mulford, SOC removal in
a membrane softening process, J. Am. Water Works Assoc.,
84 (1992) 68–78.
- K. Košutić, L. Kaštelan-Kunst, B. Kunst, Porosity of some
commercial reverse osmosis and nanofiltration polyamide thin-
film
composite membranes, J. Membr. Sci., 168 (2000) 101–108.
- K. Košutić, L. Furač, L. Sipos, B. Kunst, Removal of arsenic and
pesticides from drinking water by nanofiltration membranes,
Sep. Purif. Technol., 42 (2005) 137–144.
- S. Darvishmanesh, J. Degrève, B. Van der Bruggen, Mechanisms
of solute rejection in solvent resistant nanofiltration: the effect
of solvent on solute rejection, Phys. Chem. Chem. Phys.,
12 (2010) 13333–13342.
- T.-J. Liu, E.-E. Chang, P.-C. Chiang, Effects of concentrations
and types of natural organic matters on rejection of compounds
of emerging concern by nanofiltration, Desal. Water Treat.,
51 (2013) 6929–6939.
- A.M. Comerton, R.C. Andrews, D.M. Bagley, The influence of
natural organic matter and cations on the rejection of endocrine
disrupting and pharmaceutically active compounds by
nanofiltration, Water Res., 43 (2009) 613–622.
- C.Y. Tang, S. Fu, C.S. Criddle, J.O. Leckie, Effect of flux
(transmembrane pressure) and membrane properties on
fouling and rejection of reverse osmosis and nanofiltration
membranes treating perfluorooctane sulfonate containing
wastewater, Environ. Sci. Technol., 41 (2007) 2008–2014.
- E. Steinle-Darling, M. Reinhard, Nanofiltration for trace organic
contaminant removal: structure, solution, and membrane
fouling effects on the rejection of perfluorochemicals, Environ.
Sci. Technol., 42 (2008) 5292–5297.
- C. Bellona, J.E. Drewes, P. Xu, G. Amy, Factors affecting
the rejection of organic solutes during NF/RO treatment—
a literature review, Water Res., 38 (2004) 2795–2809.
- J. Marriott, E. Sørensen, A general approach to modelling
membrane modules, Chem. Eng. Sci., 58 (2003) 4975–4990.
- Y. Zhao, J.S. Taylor, S. Chellam, Predicting RO/NF water quality
by modified solution diffusion model and artificial neural
networks, J. Membr. Sci., 263 (2005) 38–46.
- R. Schlögl, Membrane permeation in systems far from
equilibrium, Ber. Bunsen Ges. Phys. Chem., 70 (2010) 400–414.
- J.G. Wijmans, R.W. Baker, The solution-diffusion model: a
review, J. Membr. Sci., 107 (1995) 1–21.
- O. Kedem, A. Katchalsky, Thermodynamic analysis of the
permeability of biological membranes to non-electrolytes,
Biochim. Biophys. Acta, 27 (1958) 229–246.
- K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration
(reverse osmosis): criteria for efficient membranes, Desalination,
1 (1966) 311–326.
- W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of
nanofiltration membranes for predictive purposes — use of
salts, uncharged solutes and atomic force microscopy, J. Membr.
Sci., 126 (1997) 91–105.
- H.K. Lonsdale, U. Merten, R.L. Riley, Transport properties of
cellulose acetate osmotic membranes, J. Appl. Polym. Sci.,
9 (1965) 1341–1362.
- W.R. Bowen, A.W. Mohammad, Characterization and prediction
of nanofiltration membrane performance—a general
assessment, Chem. Eng. Res. Des., 76 (1998) 885–893.
- A.W. Mohammad, N. Hilal, H. Al-Zoubi, N.A. Darwish,
Prediction of permeate fluxes and rejections of highly
concentrated salts in nanofiltration membranes, J. Membr. Sci.,
289 (2007) 40–50.
- A.D. Shah, C. Huang, J. Kim, Mechanisms of antibiotic removal
by nanofiltration membranes: model development and
application, J. Membr. Sci., 389 (2012) 234–244.
- H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad,
Rejection and modelling of sulphate and potassium salts by
nanofiltration membranes: neural network and Spiegler–
Kedem model, Desalination, 206 (2007) 42–60.
- S. Koter, Determination of the parameters of the Spiegler–
Kedem–Katchalsky model for nanofiltration of single electrolyte
solutions, Desalination, 198 (2006) 335–345.
- A.M. Hidalgo, G. León, M. Gómez, M.D. Murcia, E. Gómez, J.L.
Gómez, Application of the Spiegler–Kedem–Kachalsky model
to the removal of 4-chlorophenol by different nanofiltration
membranes, Desalination, 315 (2013) 70–75.
- J.L.C. Santos, P. de Beukelaar, I.F.J. Vankelecom, S. Velizarov,
J.G. Crespo, Effect of solute geometry and orientation on the
rejection of uncharged compounds by nanofiltration, Sep.
Purif. Technol., 50 (2006) 122–131.
- A.R.D. Verliefde, E.R. Cornelissen, S.G.J. Heijman, Verberk,
J.Q.J.C. Verberk, G.L. Amy, B. Van der Bruggen, J.C. van Dijk,
Construction and validation of a full-scale model for rejection
of organic micropollutants by NF membranes, J. Membr. Sci.,
339 (2009) 10–20.
- X. Wang, B. Li, T. Zhang, X. Li, Performance of nanofiltration
membrane in rejecting trace organic compounds: experiment
and model prediction, Desalination, 370 (2015) 7–16.
- O. Labban, C. Liu, T.H. Chong, J.H. Lienhard V, Fundamentals
of low-pressure nanofiltration: membrane characterization,
modeling, and understanding the multi-ionic interactions in
water softening, J. Membr. Sci., 521 (2017) 18–32.
- J. Wang, D.S. Dlamini, A.K. Mishra, M.T.M. Pendergast,
M.C.Y. Wong, B.B. Mamba, V. Freger, A.R.D. Verliefdee,
E.M.V. Hoek, A critical review of transport through osmotic
membranes, J. Membr. Sci., 454 (2014) 516–537.
- L.A. Mulford, J.S. Taylor, D.M. Nickerson, S.S. Chen,
NF performance at full and pilot scale, J. Am. Water Works
Assoc., 91 (1999) 64–75.
- Y. Zhao, Modeling of Membrane Solute Mass Transfer in
NF/RO Membrane Systems, University of Central Florida, 2004.
- Y. Zhao, J.S. Taylor, Incorporation of osmotic pressure in an
integrated incremental model for predicting RO or NF permeate
concentration, Desalination, 174 (2005) 145–159.
- T.K. Sherwood, P.L.T. Brian, R.E. Fisher, Desalination by reverse
osmosis, Ind. Eng. Chem. Fundam., 6 (1967) 2–12.
- S. Jeffery-Black, S.J. Duranceau, C. Franco, Caffeine removal
and mass transfer in a nanofiltration membrane process, Desal.
Water Treat., 59 (2017) 1–10.
- A.M. Hidalgo, G. León, M. Gómez, M.D. Murcia, D.S. Barbosa,
P. Blanco, Application of the solution-diffusion model for the
removal of atrazine using a nanofiltration membrane, Desal.
Water. Treat., 51 (2013) 2244–2252.
- S. Jeffery-Black, S.J. Duranceau, Mass transfer and transient
response time of a split-feed nanofiltration pilot unit, Desal.
Water Treat., 57 (2016) 25388–25398.
- M.J. López-Muñoz, A. Sotto, J.M. Arsuaga, B. Van der Bruggen,
Influence of membrane, solute and solution properties on
the retention of phenolic compounds in aqueous solution
by nanofiltration membranes, Sep. Purif. Technol., 66 (2009)
194–201.
- X. Jin, J. Hu, S.L. Ong, Removal of natural hormone estrone
from secondary effluents using nanofiltration and reverse
osmosis, Water Res., 44 (2010) 638–648.