References

  1. P.V. Ayar, M. Vrac, S. Bastin, J. Carreau, M. Déqué, C. Gallardo, Intercomparison of statistical and dynamical downscaling models under the EURO-and MED-CORDEX initiative framework: present climate evaluations, Clim. Dyn., 46 (2016) 1301–1329.
  2. C. Li, L. Zhu, Z. He, H. Gao, Y. Yang, D. Yao, X. Qu, Runoff prediction method based on adaptive elman neural network, Water, 11 (2019) 1113.
  3. D.J. Jeon, Y. Pachepsky, B. Kim, J.H. Kim, New methodology to develop high-resolution rainfall data using weather radar for watershed-scale water quality model, Desal. Water Treat., 138 (2019) 248–256.
  4. J. Hunink, G. Simons, S. Suárez-Almiñana, A. Solera, J. Andreu, M. Giuliani, P. Zamberletti, M. Grillakis, A. Koutroulis, I. Tsanis, A simplified water accounting procedure to assess climate change impact on water resources for agriculture across different European river basins, Water, 11 (2019) 1976.
  5. S. Madadgar, A. AghaKouchak, S. Shukla, A.W. Wood, L. Cheng, K.L. Hsu, M. Svoboda, A hybrid statistical‐dynamical framework for meteorological drought prediction: application to the southwestern United States, Water Resour. Res., 52 (2016) 5095–5110.
  6. H. Shastri, S. Ghosh, S. Karmakar, Improving global forecast system of extreme precipitation events with regional statistical model: application of quantile‐based probabilistic forecasts, J. Geophys. Res.: Atmos., 122 (2017) 1617–1634.
  7. Z.E. Asong, M.N. Khaliq, H.S. Wheater, Projected changes in precipitation and temperature over the Canadian Prairie Provinces using the generalized linear model statistical downscaling approach, J. Hydrol., 539 (2016) 429–446.
  8. M.H. Khan, N.S. Muhammad, A. El-Shafie, Wavelet-ANN vs. ANN-based model for hydrometeorological drought forecasting, Water, 10 (2018) 998.
  9. W.-C. Wang, K.-W. Chau, D.-M. Xu, X.-Y. Chen, Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition, Water Resour. Manage., 29 (2015) 2655–2675.
  10. M.C. Valverde, E. Araujo, H.C. Velho, Neural network and fuzzy logic statistical downscaling of atmospheric circulationtype specific weather pattern for rainfall forecasting, Appl. Soft Comput., 22 (2014) 681–694.
  11. D.R. Nayak, A. Mahapatra, P. Mishra, A survey on rainfall prediction using artificial neural network, Int. J. Comput. Appl., 72 (2013) 32–40.
  12. O. Kisi, M. Cimen, Precipitation forecasting by using waveletsupport vector machine conjunction model, Eng. Appl. Artif. Intell., 25 (2012) 783–792.
  13. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London, Ser. A, 454 (1998) 903–995.
  14. Z. Wu, N. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal., 1 (2009) 1–41.
  15. C.L. Yeh, H.C. Chang, C.H. Wu, P.L. Lee, Extraction of singletrial cortical beta oscillatory activities in EEG signals using empirical mode decomposition, Biomed. Eng. Online, 9 (2010) 25.
  16. I. Daubechies, Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math., 41 (1988) 909–996.
  17. B. Vidakovic, C.B. Lozoya, On time-dependent wavelet denoising, IEEE Trans. Signal Process., 46 (1998) 2549–2554.
  18. J. Adamowski, K.R. Sun, Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds, J. Hydrol., 390 (2010) 85–91.
  19. M. Sayemuzzaman, M.K. Jha, Seasonal and annual precipitation time series trend analysis in North Carolina, United States, Atmos. Res., 137 (2014) 183–194.
  20. Z. Hou, W. Lu, S.-M. Chen, Research on precipitation prediction based on WNN, Water Saving Irrig., 3 (2013) 31–34.
  21. P. Yang, J. Xia, Y. Zhang, S. Hong, Temporal and spatial variations of precipitation in Northwest China during 1960–2013, Atmos Res., 183 (2017) 283–295.
  22. P. Flandrin, G. Rilling, P. Goncalves, Empirical mode decomposition as a filter bank, IEEE Signal Process. Lett., 11 (2004) 112–114.
  23. Z. Wu, N.E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method, Proc. R. Soc. London, Ser. A, 460 (2004) 1597–1611.
  24. D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994) 425–455.
  25. J.L. Elman, Finding structure in time, Cognit. Sci., 14 (1990) 179–211.
  26. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986) 533–536.
  27. B.-l. Su, Y.-x. Luo, H.-w. Chen, B.-h. Wan, T. Wang, Modeling of hydrological processes in lower plain polder of the Ganjiang river, South-to-North water transfers and water science & technology, 1 (2013) 53–57 (in Chinese).