References

  1. R. Buettner Garry, W. Oberley Larry, L.S.W.H. Chan, The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay, Photochem. Photobiol., 28 (2008) 693-695.
  2. E.S.G. Barron, R.H. Demeio, F. Klemperer, Studies on biological oxidations. 5. Copper and hemochromogens as catalysts for the oxidation of ascorbic acid. The mechanism of, the oxidation, J. Biol. Chem., 112 (1936) 625-640.
  3. G.R. Buettner, In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals, J. Biochem. Biophys. Methods, 16 (1988) 27-40.
  4. G.R. Buettneret, P.G. Czapski, Ascorbate autoxidation in the presence of iron and copper chelates, Free Radic. Res. Commun., 1 (1986) 349-353.
  5. L. Li, X. Fu, J. Ai, H. Zhou, W. Zhang, D. Wang, Z. Liu, Process parameters study and organic evolution of old landfill leachate treatment using photo-Fenton-like systems: Cu2+ vs Fe2+ as catalysts, Sep. Purif. Technol., 211 (2019) 972-982.
  6. G.R. Buettneret, B.A. Jurkiewicz, Catalytic Metals, Ascorbate and free radicals: combinations to avoid, Radiat. Res., 145 (1996) 532-541.
  7. S. Uluata, D.J. McClements, E.A. Decker, How the multiple antioxidant properties of ascorbic acid affect lipid oxidation in oil-in-water emulsions, J. Agric. Food Chem., 63 (2015) 1819-1824.
  8. Y. Ogata, Y. Kosugi, T. Morimoto, Kinetics of the cupric saltcatalysed autoxidation of L-ascorbic acid in aqueous solutions, Tetrahedron, 24 (1968) 4057-4066.
  9. J. Xu, R.B. Jordan, Kinetics and mechanism of the reaction of aqueous copper(II) with ascorbic acid, Inorg. Chem., 29 (1990) 2933-2936.
  10. E.V. Shtamm, A.P. Purmal, Yu.I. Skurlatov, Mechanism of catalytic ascorbic acid oxidation system Cu2+–ascorbic acid–O2, Int. J. Chem. Kinet., 11 (2004) 461-494.
  11. L.I. Doumic, P.M. Haure, M.C. Cassanello, M.A. Ayude, Mineralization and efficiency in the homogeneous Fenton Orange G oxidation, Appl. Catal., B, 142-143 (2013) 214-221.
  12. N. Nagar, V. Devra, Oxidative degradation of Orange G by peroxomonosulfate in presence of biosynthesized copper nanoparticles—a kinetic study, Environ. Technol. Innov., 10 (2018) 281-289.
  13. J.-H. Park, J.J. Wang, R. Xiao, N. Tafti, R.D. DeLaune, D.-C. Seo, Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst, Bioresour. Technol., 249 (2018) 368-376.
  14. S. Banerjee, S. Dubey, R.K. Gautam, M.C. Chattopadhyaya, Y.C. Sharma, Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions, Arab. J. Chem., 12–8 (2019) 5339–5354.
  15. S. Zhou, Y. Yu, J. Sun, S. Zhu, J. Deng, Oxidation of microcystin-LR by copper (II) coupled with ascorbic acid: Kinetic modeling towards generation of H2O2, Chem. Eng. J., 333 (2018) 443-450.
  16. P. Zhou, J. Zhang, Y. Zhang, Y. Liu, J. Liang, B. Liu, W. Zhang, Generation of hydrogen peroxide and hydroxyl radical resulting from oxygen-dependent oxidation of L-ascorbic acid via copper redox-catalyzed reactions, RSC Adv., 6 (2016) 38541-38547.
  17. G. Eisenberg, Colorimetric determination of hydrogen peroxide, Ind. Eng. Chem. Anal. Ed., 15 (1943) 327-328.
  18. H. Lee, H.J. Lee, J. Seo, H.E. Kim, Y.K. Shin, J.H. Kim, C. Lee, Activation of oxygen and hydrogen peroxide by copper(II) coupled with hydroxylamine for oxidation of organic contaminants, Environ. Sci. Technol., 50 (2016) 8231-8238.
  19. N. Divya, A. Bansal, A.K. Jana, Degradation of acidic Orange G dye using UV-H2O2 in batch photoreactor, Int. J. Biol. Chem. Sci., 3 (2009) 54-62.
  20. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O•−) in aqueous solution, J. Phys. Chem. Ref. Data., 17 (1988) 513-886.
  21. H.-J. Lee, H. Lee, C. Lee, Degradation of diclofenac and carbamazepine by the copper(II)-catalyzed dark and photoassisted Fenton-like systems, Chem. Eng. J., 245 (2014) 258–264.
  22. S. Lunak, P. Sedlak, Photoinitiated reactions of hydrogen peroxide in the liquid phase, J. Photochem. Photobiol. A Chem., 68 (1992) 1–33.
  23. J. Bolobajev, M. Trapido, A. Goi, Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid, Chem. Eng. J., 281 (2015) 566-574.
  24. F. Malemet, D. Mandler, Self-assembled monolayers in electroanalytical chemistry: application of omega.-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid, Anal. Chem., 65 (1993) 37-41.
  25. A. Ninh Pham, G.i Xing, C.J. Miller, T.D. Waite, Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production, J. Catal., 301 (2013) 54–64.